Sun-Hee Kim , Lei Li , Christos Faloutsos , Hyung-Jeong Yang , Seong-Whan Lee
{"title":"HeartCast: Predicting acute hypotensive episodes in intensive care units","authors":"Sun-Hee Kim , Lei Li , Christos Faloutsos , Hyung-Jeong Yang , Seong-Whan Lee","doi":"10.1016/j.stamet.2016.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Acute hypotensive episodes (AHEs) are serious clinical events in intensive care units (ICUs), and require immediate treatment to prevent patient injury. Reducing the risks associated with an AHE requires effective and efficient mining of data generated from multiple physiological time series. We propose HeartCast, a model that extracts essential features from such data to effectively predict AHE. HeartCast combines a non-linear support vector machine with best-feature extraction via analysis of the baseline threshold, quartile parameters, and window size of the physiological signals. Our approach has the following benefits: (a) it extracts the most relevant features; (b) it provides the best results for identification of an AHE event; (c) it is fast and scales with linear complexity over the length of the window; and (d) it can manage missing values and noise/outliers by using a best-feature extraction method. We performed experiments on data continuously captured from physiological time series of ICU patients (roughly 3 GB of processed data). HeartCast was found to outperform other state-of-the-art methods found in the literature with a 13.7% improvement in classification accuracy.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"33 ","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.07.001","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12
Abstract
Acute hypotensive episodes (AHEs) are serious clinical events in intensive care units (ICUs), and require immediate treatment to prevent patient injury. Reducing the risks associated with an AHE requires effective and efficient mining of data generated from multiple physiological time series. We propose HeartCast, a model that extracts essential features from such data to effectively predict AHE. HeartCast combines a non-linear support vector machine with best-feature extraction via analysis of the baseline threshold, quartile parameters, and window size of the physiological signals. Our approach has the following benefits: (a) it extracts the most relevant features; (b) it provides the best results for identification of an AHE event; (c) it is fast and scales with linear complexity over the length of the window; and (d) it can manage missing values and noise/outliers by using a best-feature extraction method. We performed experiments on data continuously captured from physiological time series of ICU patients (roughly 3 GB of processed data). HeartCast was found to outperform other state-of-the-art methods found in the literature with a 13.7% improvement in classification accuracy.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.