{"title":"Discrete time software reliability modeling with periodic debugging schedule","authors":"Sudipta Das, Anup Dewanji, Debasis Sengupta","doi":"10.1016/j.stamet.2016.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>In many situations, multiple copies of a software are tested in parallel with different test cases as input, and the detected errors from a particular round of testing are debugged together. In this article, we discuss a discrete time model of software reliability for such a scenario of periodic debugging. We propose likelihood based inference of the model parameters, including the initial number of errors, under the assumption that all errors are equally likely to be detected. The proposed method is used to estimate the reliability of the software. We establish asymptotic normality<span> of the estimated model parameters<span>. The performance of the proposed method is evaluated through a simulation study and its use is illustrated through the analysis of a dataset obtained from testing of a real-time flight control software. We also consider a more general model, in which different errors have different probabilities of detection.</span></span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"33 ","pages":"Pages 147-159"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.08.006","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
In many situations, multiple copies of a software are tested in parallel with different test cases as input, and the detected errors from a particular round of testing are debugged together. In this article, we discuss a discrete time model of software reliability for such a scenario of periodic debugging. We propose likelihood based inference of the model parameters, including the initial number of errors, under the assumption that all errors are equally likely to be detected. The proposed method is used to estimate the reliability of the software. We establish asymptotic normality of the estimated model parameters. The performance of the proposed method is evaluated through a simulation study and its use is illustrated through the analysis of a dataset obtained from testing of a real-time flight control software. We also consider a more general model, in which different errors have different probabilities of detection.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.