AutoGGN: A gene graph network AutoML tool for multi-omics research

Lei Zhang , Wen Shen , Ping Li , Chi Xu , Denghui Liu , Wenjun He , Zhimeng Xu , Deyong Wang , Chenyi Zhang , Hualiang Jiang , Mingyue Zheng , Nan Qiao
{"title":"AutoGGN: A gene graph network AutoML tool for multi-omics research","authors":"Lei Zhang ,&nbsp;Wen Shen ,&nbsp;Ping Li ,&nbsp;Chi Xu ,&nbsp;Denghui Liu ,&nbsp;Wenjun He ,&nbsp;Zhimeng Xu ,&nbsp;Deyong Wang ,&nbsp;Chenyi Zhang ,&nbsp;Hualiang Jiang ,&nbsp;Mingyue Zheng ,&nbsp;Nan Qiao","doi":"10.1016/j.ailsci.2021.100019","DOIUrl":null,"url":null,"abstract":"<div><p>Omics data can be used to identify biological characteristics from genetic to phenotypic levels during the life span of a living being, while molecular interaction networks have a fundamental impact on life activities. Integrating omics data and molecular interaction networks will help researchers delve into comprehensive information hidden in the data. Here, we propose a new multimodal method — AutoGGN — to integrate multi-omics data with molecular interaction networks based on graph convolutional neural networks (GCNs). We evaluated AutoGGN using three classification tasks: single-cell embryonic developmental stage classification, pan-cancer type classification, and breast cancer subtyping. On all three tasks, AutoGGN showed better performance than other methods. This means AutoGGN has the potential to extract insights more effectively by means of integrating molecular interaction networks with multi-omics data. Additionally, in order to provide a better understanding of how our model makes predictions, we utilized the SHAP module and identified the key genes contributing to the classification, providing insight for the design of downstream biological experiments.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000192/pdfft?md5=91b39ee64c55f03bb6fc4708ba1153ea&pid=1-s2.0-S2667318521000192-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318521000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Omics data can be used to identify biological characteristics from genetic to phenotypic levels during the life span of a living being, while molecular interaction networks have a fundamental impact on life activities. Integrating omics data and molecular interaction networks will help researchers delve into comprehensive information hidden in the data. Here, we propose a new multimodal method — AutoGGN — to integrate multi-omics data with molecular interaction networks based on graph convolutional neural networks (GCNs). We evaluated AutoGGN using three classification tasks: single-cell embryonic developmental stage classification, pan-cancer type classification, and breast cancer subtyping. On all three tasks, AutoGGN showed better performance than other methods. This means AutoGGN has the potential to extract insights more effectively by means of integrating molecular interaction networks with multi-omics data. Additionally, in order to provide a better understanding of how our model makes predictions, we utilized the SHAP module and identified the key genes contributing to the classification, providing insight for the design of downstream biological experiments.

Abstract Image

AutoGGN:一个用于多组学研究的基因图网络AutoML工具
组学数据可用于识别生物生命周期中从遗传到表型水平的生物学特征,而分子相互作用网络对生命活动具有根本影响。将组学数据与分子相互作用网络相结合,将有助于研究人员深入挖掘隐藏在数据中的综合信息。在此,我们提出了一种新的基于图卷积神经网络(GCNs)的多模态方法AutoGGN,将多组学数据与分子相互作用网络相结合。我们通过三个分类任务来评估AutoGGN:单细胞胚胎发育阶段分类、泛癌类型分类和乳腺癌亚型。在这三个任务上,AutoGGN都比其他方法表现得更好。这意味着AutoGGN有潜力通过整合分子相互作用网络和多组学数据来更有效地提取见解。此外,为了更好地理解我们的模型是如何进行预测的,我们利用了SHAP模块并确定了有助于分类的关键基因,为下游生物实验的设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信