Analysis of δ 13C and δ 18O in calcite, dolomite, rhodochrosite and siderite using a laser extraction system

M.D. Powell, T.K. Kyser
{"title":"Analysis of δ 13C and δ 18O in calcite, dolomite, rhodochrosite and siderite using a laser extraction system","authors":"M.D. Powell,&nbsp;T.K. Kyser","doi":"10.1016/0168-9622(91)90040-4","DOIUrl":null,"url":null,"abstract":"<div><p>δ <sup>13</sup>C- and δ <sup>18</sup>O-values of calcite, dolomite, rhodochrosite and siderite have been determined in situ using a laser extraction system, in which a focused Nd: YAG laser beam excites a sample surface producing a high-energy plasma cloud which forms CO and CO<sub>2</sub>. Laser ionization of calcite, dolomite, rhodochrosite and siderite produces different yields of CO<sub>2</sub> and CO and different CO<sub>2</sub>/CO ratios for each mineral. Isotopic analyses of combined CO and CO<sub>2</sub> are reproducible to ± 1–2‰ for δ <sup>18</sup>O and ± 2–3‰ for δ <sup>13</sup>C and are distinctly different from the isotopic compositions determined using standard acid dissolution techniques. CO<sub>2</sub> produced from laser ionization is consistently enriched in <sup>13</sup>C and <sup>18</sup>O compared to CO. A two-stage model is proposed to explain variations observed in the experimental results. In the first stage, the energy is absorbed by the mineral but the quantity and isotopic composition of gases depends on the chemical composition of the sample, especially the quantity of transition metals which have electronic transitions commensurate with the wavelength of the Nd: YAG. In the second stage, the relative isotopic compositions of CO and CO<sub>2</sub> are affected by reactions in the cooling plasma. This model should be applicable to all laser ionization systems.</p></div>","PeriodicalId":100231,"journal":{"name":"Chemical Geology: Isotope Geoscience section","volume":"94 1","pages":"Pages 55-66"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0168-9622(91)90040-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology: Isotope Geoscience section","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0168962291900404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

δ 13C- and δ 18O-values of calcite, dolomite, rhodochrosite and siderite have been determined in situ using a laser extraction system, in which a focused Nd: YAG laser beam excites a sample surface producing a high-energy plasma cloud which forms CO and CO2. Laser ionization of calcite, dolomite, rhodochrosite and siderite produces different yields of CO2 and CO and different CO2/CO ratios for each mineral. Isotopic analyses of combined CO and CO2 are reproducible to ± 1–2‰ for δ 18O and ± 2–3‰ for δ 13C and are distinctly different from the isotopic compositions determined using standard acid dissolution techniques. CO2 produced from laser ionization is consistently enriched in 13C and 18O compared to CO. A two-stage model is proposed to explain variations observed in the experimental results. In the first stage, the energy is absorbed by the mineral but the quantity and isotopic composition of gases depends on the chemical composition of the sample, especially the quantity of transition metals which have electronic transitions commensurate with the wavelength of the Nd: YAG. In the second stage, the relative isotopic compositions of CO and CO2 are affected by reactions in the cooling plasma. This model should be applicable to all laser ionization systems.

方解石、白云石、红锰矿和菱铁矿中δ 13C和δ 18O的激光提取分析
利用激光提取系统原位测定了方解石、白云石、菱铁矿和红锰矿的δ 13C-和δ 18o值,该系统采用聚焦Nd: YAG激光束激发样品表面产生高能等离子体云,形成CO和CO2。方解石、白云石、红锰矿和菱铁矿的激光电离对每种矿物产生不同的CO2和CO产率以及不同的CO2/CO比值。δ 18O和δ 13C的组合CO和CO2的同位素分析可重复性为±1-2‰和±2-3‰,与使用标准酸溶技术测定的同位素组成明显不同。与CO相比,激光电离产生的CO2在13C和18O中始终富集。提出了一个两阶段模型来解释实验结果中观察到的变化。在第一阶段,能量被矿物吸收,但气体的数量和同位素组成取决于样品的化学成分,特别是具有与Nd: YAG波长相称的电子跃迁的过渡金属的数量。在第二阶段,CO和CO2的相对同位素组成受到冷却等离子体中的反应的影响。该模型应适用于所有激光电离系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信