Paul Burian , Manuel Feurhuber , Marco Miranda , Marino Magno , Christoph Hochenauer
{"title":"Numerical prediction of the chemical indicator response used in steam sterilisers","authors":"Paul Burian , Manuel Feurhuber , Marco Miranda , Marino Magno , Christoph Hochenauer","doi":"10.1016/j.phmed.2020.100034","DOIUrl":null,"url":null,"abstract":"<div><p>Steam sterilisation is a commonly used method in the sterilisation of surgical instruments. To ensure the sterility of the sterilised goods an evaluation of the sterilisation process is required. This might be achieved either through physical measurements or indicators. Optimal sterilisation results are achieved by removing the air from the sterilisation chamber. In this paper a new computational fluid dynamics (CFD) based approach is presented, which allows to calculate the steam distribution within a sterilisation chamber with focusing on hollow loads. Additional measurements were performed using a self-developed measurement chamber to validate the CFD model. A modified process challenge device (PCD) with different tube lengths in combination with a chemical indicator (CI) was tested, to identify the volumetric influence of the lumen on the resulting air-steam mixture therein. A numerically efficient model was developed to determine a steam volume fraction threshold leading to a response of the CI. This study aims to predict the volumetric amount of steam which is necessary in order to pass a PCD test fitted with a CI. Both the CFD model and the measurements showed that often an insufficient steam penetration is indicated by PCDs which can lead to an insufficient sterilisation of hollow loads.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"11 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2020.100034","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235245102030010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5
Abstract
Steam sterilisation is a commonly used method in the sterilisation of surgical instruments. To ensure the sterility of the sterilised goods an evaluation of the sterilisation process is required. This might be achieved either through physical measurements or indicators. Optimal sterilisation results are achieved by removing the air from the sterilisation chamber. In this paper a new computational fluid dynamics (CFD) based approach is presented, which allows to calculate the steam distribution within a sterilisation chamber with focusing on hollow loads. Additional measurements were performed using a self-developed measurement chamber to validate the CFD model. A modified process challenge device (PCD) with different tube lengths in combination with a chemical indicator (CI) was tested, to identify the volumetric influence of the lumen on the resulting air-steam mixture therein. A numerically efficient model was developed to determine a steam volume fraction threshold leading to a response of the CI. This study aims to predict the volumetric amount of steam which is necessary in order to pass a PCD test fitted with a CI. Both the CFD model and the measurements showed that often an insufficient steam penetration is indicated by PCDs which can lead to an insufficient sterilisation of hollow loads.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.