{"title":"Prior Adaptive Semi-supervised Learning with Application to EHR Phenotyping.","authors":"Yichi Zhang, Molei Liu, Matey Neykov, Tianxi Cai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Record (EHR) data, a rich source for biomedical research, have been successfully used to gain novel insight into a wide range of diseases. Despite its potential, EHR is currently underutilized for discovery research due to its major limitation in the lack of precise phenotype information. To overcome such difficulties, recent efforts have been devoted to developing supervised algorithms to accurately predict phenotypes based on relatively small training datasets with gold standard labels extracted via chart review. However, supervised methods typically require a sizable training set to yield generalizable algorithms, especially when the number of candidate features, <math><mi>p</mi></math>, is large. In this paper, we propose a semi-supervised (SS) EHR phenotyping method that borrows information from both a small, labeled dataset (where both the label <math><mi>Y</mi></math> and the feature set <math><mi>X</mi></math> are observed) and a much larger, weakly-labeled dataset in which the feature set <math><mi>X</mi></math> is accompanied only by a surrogate label <math><mi>S</mi></math> that is available to all patients. Under a <i>working</i> prior assumption that <math><mi>S</mi></math> is related to <math><mi>X</mi></math> only through <math><mi>Y</mi></math> and allowing it to hold <i>approximately</i>, we propose a prior adaptive semi-supervised (PASS) estimator that incorporates the prior knowledge by shrinking the estimator towards a direction derived under the prior. We derive asymptotic theory for the proposed estimator and justify its efficiency and robustness to prior information of poor quality. We also demonstrate its superiority over existing estimators under various scenarios via simulation studies and on three real-world EHR phenotyping studies at a large tertiary hospital.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic Health Record (EHR) data, a rich source for biomedical research, have been successfully used to gain novel insight into a wide range of diseases. Despite its potential, EHR is currently underutilized for discovery research due to its major limitation in the lack of precise phenotype information. To overcome such difficulties, recent efforts have been devoted to developing supervised algorithms to accurately predict phenotypes based on relatively small training datasets with gold standard labels extracted via chart review. However, supervised methods typically require a sizable training set to yield generalizable algorithms, especially when the number of candidate features, , is large. In this paper, we propose a semi-supervised (SS) EHR phenotyping method that borrows information from both a small, labeled dataset (where both the label and the feature set are observed) and a much larger, weakly-labeled dataset in which the feature set is accompanied only by a surrogate label that is available to all patients. Under a working prior assumption that is related to only through and allowing it to hold approximately, we propose a prior adaptive semi-supervised (PASS) estimator that incorporates the prior knowledge by shrinking the estimator towards a direction derived under the prior. We derive asymptotic theory for the proposed estimator and justify its efficiency and robustness to prior information of poor quality. We also demonstrate its superiority over existing estimators under various scenarios via simulation studies and on three real-world EHR phenotyping studies at a large tertiary hospital.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.