Exosome-delivered circRNA circSYT15 contributes to cisplatin resistance in cervical cancer cells through the miR-503-5p/RSF1 axis.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Cell Cycle Pub Date : 2023-10-01 Epub Date: 2023-12-15 DOI:10.1080/15384101.2023.2281768
Zhilong Chen, Zhen Xu, Qian Wang, Lu Wang, Hailing Zhang, Wuliang Wang, Hu Zhao, Yilin Guo, Jinquan Cui
{"title":"Exosome-delivered circRNA circSYT15 contributes to cisplatin resistance in cervical cancer cells through the miR-503-5p/RSF1 axis.","authors":"Zhilong Chen, Zhen Xu, Qian Wang, Lu Wang, Hailing Zhang, Wuliang Wang, Hu Zhao, Yilin Guo, Jinquan Cui","doi":"10.1080/15384101.2023.2281768","DOIUrl":null,"url":null,"abstract":"<p><p>The development of chemotherapy resistance is a major obstacle for cervical cancer (CC) patients. Exosome-mediated transfer of circular RNAs (circRNAs) was found to have relevance to the CC. This study is designed to explore the role and mechanism of exosomal circRNA synaptotagmin 15 (circSYT15) on cisplatin (DDP) resistance in CC. Cell proliferation ability and apoptosis rate were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), colony formation, and flow cytometry assays. CircSYT15, microRNA-503-5p (miR-503-5p), Remodeling spacing factor 1 (RSF1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Exosomes were analyzed by a transmission electron microscope and nanoparticle tracking analysis. CD63, CD81, TSC101, Bcl-2, Bax, C-caspase 3, and RSF1 protein levels were examined by western blot assay. The binding between miR-503-5p and circSYT15 or RSF1 was predicted by circBank or Starbase and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP). The biological role of exosomal circSYT15 in DDP resistance of CC in vivo. CircSYT15 was upregulated in the DDP-resistant CC cells and exosomes isolated from DDP-resistant CC cells. CircSYT15 knockdown repressed the proliferation and drug resistance of CC and induced apoptosis in CC cells. Exosomes shuttled circSYT15 act as a sponge to affect RSF1 expression, thereby promoting proliferation and drug resistance and repressing apoptosis of sensitive CC cells. Exosomal circSYT15 boost DDP resistance of cervical cancer in vivo. Exosome-mediated transfer of circSYT15 enhanced DDP resistance in CC partly by targeting the miR-503-5p/RSF1 axis, providing a foundation for future clinical applications of CC drug resistance.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2023.2281768","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of chemotherapy resistance is a major obstacle for cervical cancer (CC) patients. Exosome-mediated transfer of circular RNAs (circRNAs) was found to have relevance to the CC. This study is designed to explore the role and mechanism of exosomal circRNA synaptotagmin 15 (circSYT15) on cisplatin (DDP) resistance in CC. Cell proliferation ability and apoptosis rate were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), colony formation, and flow cytometry assays. CircSYT15, microRNA-503-5p (miR-503-5p), Remodeling spacing factor 1 (RSF1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Exosomes were analyzed by a transmission electron microscope and nanoparticle tracking analysis. CD63, CD81, TSC101, Bcl-2, Bax, C-caspase 3, and RSF1 protein levels were examined by western blot assay. The binding between miR-503-5p and circSYT15 or RSF1 was predicted by circBank or Starbase and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP). The biological role of exosomal circSYT15 in DDP resistance of CC in vivo. CircSYT15 was upregulated in the DDP-resistant CC cells and exosomes isolated from DDP-resistant CC cells. CircSYT15 knockdown repressed the proliferation and drug resistance of CC and induced apoptosis in CC cells. Exosomes shuttled circSYT15 act as a sponge to affect RSF1 expression, thereby promoting proliferation and drug resistance and repressing apoptosis of sensitive CC cells. Exosomal circSYT15 boost DDP resistance of cervical cancer in vivo. Exosome-mediated transfer of circSYT15 enhanced DDP resistance in CC partly by targeting the miR-503-5p/RSF1 axis, providing a foundation for future clinical applications of CC drug resistance.

外泌体递送的circRNA circSYT15通过miR-503-5p/RSF1轴参与宫颈癌细胞的顺铂耐药。
化疗耐药的发展是宫颈癌(CC)患者的主要障碍。本研究旨在探讨外泌体circRNA synaptotagmin 15 (circSYT15)在CC顺铂(DDP)耐药中的作用和机制,通过细胞计数试剂盒-8 (CCK-8)、5-乙基-2'-脱氧尿苷(EdU)、集落形成和流式细胞术检测细胞增殖能力和凋亡率。实时定量聚合酶链反应(RT-qPCR)检测CircSYT15、microRNA-503-5p (miR-503-5p)、重塑间隔因子1 (RSF1)水平。外泌体通过透射电子显微镜和纳米颗粒跟踪分析进行分析。western blot检测CD63、CD81、TSC101、Bcl-2、Bax、C-caspase 3、RSF1蛋白水平。通过circBank或Starbase预测miR-503-5p与circSYT15或RSF1的结合,然后通过双荧光素酶报告基因和RNA免疫沉淀(RIP)验证。外泌体circSYT15在CC体内DDP耐药中的生物学作用CircSYT15在ddp抗性CC细胞和从ddp抗性CC细胞分离的外泌体中表达上调。CircSYT15基因敲低可抑制CC细胞增殖和耐药,诱导CC细胞凋亡。穿梭于circSYT15的外泌体像海绵一样影响RSF1的表达,从而促进CC敏感细胞的增殖和耐药,抑制凋亡。外泌体circSYT15促进宫颈癌体内DDP耐药外泌体介导的circSYT15转移部分通过靶向miR-503-5p/RSF1轴增强CC中DDP耐药,为未来CC耐药的临床应用提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Cycle
Cell Cycle 生物-细胞生物学
CiteScore
7.70
自引率
2.30%
发文量
281
审稿时长
1 months
期刊介绍: Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信