{"title":"Employment of Free Packages for MT-InSAR Approaches to Verify the Subsidence Event over Maceió City, Brazil","authors":"Sérgio Da Conceição Alves, Cláudia Pereira Krueger, Regiane Dalazoana, Laurent Polidori","doi":"10.11137/1982-3908_2023_46_56709","DOIUrl":null,"url":null,"abstract":"Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique employs a Multi-Temporal InSAR (MT-InSAR) approach to accurately measure subsidence. This technique, a type of Differential Interferometry (DInSAR), mitigates errors that traditional DInSAR techniques cannot, including temporal and geometric decorrelation, and phase unwrapping errors. In order to verify the subsidence process in the Pinheiro neighborhood of Maceio - Brazil following a 2018 earthquake, we tested free processing packages such as SNAP-StaMPS integration. Our investigation was conducted in two stages: first, using a stack of Sentinel-1A SLCSAR (Single Look Complex-SAR) images acquired before and after the earthquake, and second, using more recent images to determine if the subsidence process is ongoing. Results from the first stage identified the area affected by subsidence and the second stage confirmed the continued presence of subsidence events. From 2017 to 2018, the subsidence process exhibited the highest displacement amplitude of -32.3 mm/year, whereas, between 2021 and 2022, the amplitude decreased to -24.09 mm/year, indicating a deceleration in the subsidence process.","PeriodicalId":39973,"journal":{"name":"Anuario do Instituto de Geociencias","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anuario do Instituto de Geociencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11137/1982-3908_2023_46_56709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique employs a Multi-Temporal InSAR (MT-InSAR) approach to accurately measure subsidence. This technique, a type of Differential Interferometry (DInSAR), mitigates errors that traditional DInSAR techniques cannot, including temporal and geometric decorrelation, and phase unwrapping errors. In order to verify the subsidence process in the Pinheiro neighborhood of Maceio - Brazil following a 2018 earthquake, we tested free processing packages such as SNAP-StaMPS integration. Our investigation was conducted in two stages: first, using a stack of Sentinel-1A SLCSAR (Single Look Complex-SAR) images acquired before and after the earthquake, and second, using more recent images to determine if the subsidence process is ongoing. Results from the first stage identified the area affected by subsidence and the second stage confirmed the continued presence of subsidence events. From 2017 to 2018, the subsidence process exhibited the highest displacement amplitude of -32.3 mm/year, whereas, between 2021 and 2022, the amplitude decreased to -24.09 mm/year, indicating a deceleration in the subsidence process.
期刊介绍:
The Anuário do Instituto de Geociências (Anuário IGEO) is an official publication of the Universidade Federal do Rio de Janeiro (UFRJ – CCMN) with the objective to publish original scientific papers of broad interest in the field of Geology, Paleontology, Geography and Meteorology.