{"title":"Spontaneous imbibition behavior in porous media with various hydraulic fracture propagations: A pore-scale perspective","authors":"Yan Zhou, Wei Guan, Changming Zhao, Xiaojing Zou, Zhennan He, Hongyang Zhao","doi":"10.46690/ager.2023.09.06","DOIUrl":null,"url":null,"abstract":"Hydraulic fracturing technology can improve the geologic structure of unconventional oil and gas reservoirs, yielding a complex fracture network resulting from the synergistic action of hydraulic and natural fractures. However, the impact of spontaneous imbibition associated with hydraulic fracture propagation on the reservoir matrix remains poorly understood. In this study, combining the Cahn-Hilliard phase field method with the Navier-Stokes equations, pore-scale modeling was employed to capture the evolution of the oil-water interface during dynamic spontaneous imbibition for hydraulic fracture propagation in a two-end open mode. This pore-scale modeling approach can effectively circumvent the challenges of conducting spontaneous imbibition experiments on specimens partitioned by hydraulic fractures. A direct correlation was established between the pressure difference curve and the morphology of discharged oil phase in the primary hydraulic fracture, providing valuable insights into the distribution of oil phase in spontaneous imbibition. Furthermore, it was shown that secondary hydraulic fracture propagation expands the longitudinal swept area and enhances the utilization of natural fractures in the transverse swept area during spontaneous imbibition. When secondary hydraulic fracture propagation results in the interconnection of upper and lower primary hydraulic fractures, competitive imbibition occurs in the matrix, leading to reduced oil recovery compared to the unconnected models. Our results shed light upon the spontaneous imbibition mechanism in porous media with hydraulic fracture propagation, contributing to the refinement and application of hydraulic fracturing techniques. Document Type: Original article Cited as: Zhou, Y., Guan, W., Zhao, C., Zou, X., He, Z., Zhao, H. Spontaneous imbibition behavior in porous media with various hydraulic fracture propagations: A pore-scale perspective. Advances in Geo-Energy Research, 2023, 9(3): 185-197. https://doi.org/10.46690/ager.2023.09.06","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":"29 1","pages":"0"},"PeriodicalIF":9.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2023.09.06","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Hydraulic fracturing technology can improve the geologic structure of unconventional oil and gas reservoirs, yielding a complex fracture network resulting from the synergistic action of hydraulic and natural fractures. However, the impact of spontaneous imbibition associated with hydraulic fracture propagation on the reservoir matrix remains poorly understood. In this study, combining the Cahn-Hilliard phase field method with the Navier-Stokes equations, pore-scale modeling was employed to capture the evolution of the oil-water interface during dynamic spontaneous imbibition for hydraulic fracture propagation in a two-end open mode. This pore-scale modeling approach can effectively circumvent the challenges of conducting spontaneous imbibition experiments on specimens partitioned by hydraulic fractures. A direct correlation was established between the pressure difference curve and the morphology of discharged oil phase in the primary hydraulic fracture, providing valuable insights into the distribution of oil phase in spontaneous imbibition. Furthermore, it was shown that secondary hydraulic fracture propagation expands the longitudinal swept area and enhances the utilization of natural fractures in the transverse swept area during spontaneous imbibition. When secondary hydraulic fracture propagation results in the interconnection of upper and lower primary hydraulic fractures, competitive imbibition occurs in the matrix, leading to reduced oil recovery compared to the unconnected models. Our results shed light upon the spontaneous imbibition mechanism in porous media with hydraulic fracture propagation, contributing to the refinement and application of hydraulic fracturing techniques. Document Type: Original article Cited as: Zhou, Y., Guan, W., Zhao, C., Zou, X., He, Z., Zhao, H. Spontaneous imbibition behavior in porous media with various hydraulic fracture propagations: A pore-scale perspective. Advances in Geo-Energy Research, 2023, 9(3): 185-197. https://doi.org/10.46690/ager.2023.09.06
Advances in Geo-Energy Researchnatural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍:
Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.