Sandra R. Schachat, Jonathan L. Payne, C. Kevin Boyce
{"title":"Linking host plants to damage types in the fossil record of insect herbivory","authors":"Sandra R. Schachat, Jonathan L. Payne, C. Kevin Boyce","doi":"10.1017/pab.2022.35","DOIUrl":null,"url":null,"abstract":"Abstract Studies of insect herbivory on fossilized leaves tend to focus on a few, relatively simple metrics that are agnostic to the distribution of insect damage types among host plants. More complex metrics that link particular damage types to particular host plants have the potential to address additional ecological questions, but such metrics can be biased by sampling incompleteness due to the difficulty of distinguishing the true absence of a particular interaction from the failure to detect it—a challenge that has been raised in the ecological literature. We evaluate a range of methods for characterizing the relationships between damage types and host plants by performing resampling and subsampling exercises on a variety of datasets. We found that the components of beta diversity provide a more valid, reliable, and interpretable method for comparing component communities than do bipartite network metrics and that the rarefaction of interactions represent a valid, reliable, and interpretable method for comparing compound communities. Both beta diversity and rarefaction of interactions avoid the potential pitfalls of multiple comparisons. Finally, we found that the host specificity of individual damage types is challenging to assess. Whereas bipartite network metrics are sufficiently biased by sampling incompleteness to be inappropriate for fossil herbivory data, alternatives exist that are perfectly suitable for fossil datasets with sufficient sample coverage.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"68 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pab.2022.35","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Studies of insect herbivory on fossilized leaves tend to focus on a few, relatively simple metrics that are agnostic to the distribution of insect damage types among host plants. More complex metrics that link particular damage types to particular host plants have the potential to address additional ecological questions, but such metrics can be biased by sampling incompleteness due to the difficulty of distinguishing the true absence of a particular interaction from the failure to detect it—a challenge that has been raised in the ecological literature. We evaluate a range of methods for characterizing the relationships between damage types and host plants by performing resampling and subsampling exercises on a variety of datasets. We found that the components of beta diversity provide a more valid, reliable, and interpretable method for comparing component communities than do bipartite network metrics and that the rarefaction of interactions represent a valid, reliable, and interpretable method for comparing compound communities. Both beta diversity and rarefaction of interactions avoid the potential pitfalls of multiple comparisons. Finally, we found that the host specificity of individual damage types is challenging to assess. Whereas bipartite network metrics are sufficiently biased by sampling incompleteness to be inappropriate for fossil herbivory data, alternatives exist that are perfectly suitable for fossil datasets with sufficient sample coverage.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.