Solitary waves on flows with an exponentially sheared current and stagnation points

IF 0.8 4区 工程技术 Q3 MATHEMATICS, APPLIED
Marcelo V Flamarion, Roberto-J R Ribeiro
{"title":"Solitary waves on flows with an exponentially sheared current and stagnation points","authors":"Marcelo V Flamarion, Roberto-J R Ribeiro","doi":"10.1093/qjmam/hbac021","DOIUrl":null,"url":null,"abstract":"Summary While several articles have been written on water waves on flows with constant vorticity, little is known about the extent to which a non-constant vorticity affects the flow structure, such as the appearance of stagnation points. In order to shed light on this topic, we investigate in detail the flow beneath solitary waves propagating on an exponentially decaying sheared current. Our focus is to analyse numerically the emergence of stagnation points. For this purpose, we approximate the velocity field within the fluid bulk through the classical Korteweg-de Vries asymptotic expansion and use the Matlab language to evaluate the resulting stream function. Our findings suggest that the flow beneath the waves can have 0, 1 or 2 stagnation points in the fluid body. We also study the bifurcation between these flows. Our simulations indicate that the stagnation points emerge from a streamline with a sharp corner.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"24 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qjmam/hbac021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Summary While several articles have been written on water waves on flows with constant vorticity, little is known about the extent to which a non-constant vorticity affects the flow structure, such as the appearance of stagnation points. In order to shed light on this topic, we investigate in detail the flow beneath solitary waves propagating on an exponentially decaying sheared current. Our focus is to analyse numerically the emergence of stagnation points. For this purpose, we approximate the velocity field within the fluid bulk through the classical Korteweg-de Vries asymptotic expansion and use the Matlab language to evaluate the resulting stream function. Our findings suggest that the flow beneath the waves can have 0, 1 or 2 stagnation points in the fluid body. We also study the bifurcation between these flows. Our simulations indicate that the stagnation points emerge from a streamline with a sharp corner.
具有指数剪切流和滞止点的流上的孤波
虽然已经有几篇关于恒定涡量流动中的水波的文章,但对于非恒定涡量对流动结构的影响程度,例如停滞点的出现,知之甚少。为了阐明这一主题,我们详细研究了在指数衰减剪切电流上传播的孤立波下的流动。我们的重点是对停滞点的出现进行数值分析。为此,我们通过经典的Korteweg-de Vries渐近展开近似流体体内的速度场,并使用Matlab语言计算得到的流函数。我们的研究结果表明,波浪下的流动在流体体内可能有0、1或2个驻点。我们还研究了这些流之间的分岔。我们的模拟表明,滞止点出现在有尖角的流线上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信