Forecasting stability and growth pact compliance using machine learning

Kea Baret, Amélie Barbier-Gauchard, Theophilos Papadimitriou
{"title":"Forecasting stability and growth pact compliance using machine learning","authors":"Kea Baret, Amélie Barbier-Gauchard, Theophilos Papadimitriou","doi":"10.1111/twec.13518","DOIUrl":null,"url":null,"abstract":"Abstract The 2011 reform of the Stability and Growth Pact (1996) strengthened the European Commission's monitoring of EU member states' public finance. Failure to comply with the 3% limit on public deficit triggers an audit. In this paper, we present a machine learning based forecasting model for compliance with the 3% limit. We use data from 2006 to 2018 (a turbulent period including the Global Financial Crisis and the Sovereign Debt Crisis) for the 28 EU member states. After identifying 8 features as predictors among 138 variables, forecasting is performed using a support vector machine (SVM) algorithm. The proposed model achieved a forecasting accuracy of nearly 92% and outperformed the logit model used as a benchmark.","PeriodicalId":75211,"journal":{"name":"The World economy","volume":"8 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/twec.13518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The 2011 reform of the Stability and Growth Pact (1996) strengthened the European Commission's monitoring of EU member states' public finance. Failure to comply with the 3% limit on public deficit triggers an audit. In this paper, we present a machine learning based forecasting model for compliance with the 3% limit. We use data from 2006 to 2018 (a turbulent period including the Global Financial Crisis and the Sovereign Debt Crisis) for the 28 EU member states. After identifying 8 features as predictors among 138 variables, forecasting is performed using a support vector machine (SVM) algorithm. The proposed model achieved a forecasting accuracy of nearly 92% and outperformed the logit model used as a benchmark.
使用机器学习预测稳定性和增长协议遵从性
2011年《稳定与增长公约》(1996)的改革加强了欧盟委员会对欧盟成员国公共财政的监督。未能遵守3%的公共赤字限制将触发审计。在本文中,我们提出了一个基于机器学习的预测模型,以满足3%的限制。我们使用了2006年至2018年(包括全球金融危机和主权债务危机在内的动荡时期)28个欧盟成员国的数据。在138个变量中识别出8个特征作为预测因子后,使用支持向量机(SVM)算法进行预测。该模型的预测准确率接近92%,优于作为基准的logit模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信