Coloring lines and Delaunay graphs with respect to boxes

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Tomon, István
{"title":"Coloring lines and Delaunay graphs with respect to boxes","authors":"Tomon, István","doi":"10.1002/rsa.21193","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to show the existence (using probabilistic tools) of configurations of lines, boxes, and points with certain interesting combinatorial properties. (i) First, we construct a family of $n$ lines in $\\mathbb{R}^3$ whose intersection graph is triangle-free of chromatic number $\\Omega(n^{1/15})$. This improves the previously best known bound $\\Omega(\\log\\log n)$ by Norin, and is also the first construction of a triangle-free intersection graph of simple geometric objects with polynomial chromatic number. (ii) Second, we construct a set of $n$ points in $\\mathbb{R}^d$, whose Delaunay graph with respect to axis-parallel boxes has independence number at most $n\\cdot (\\log n)^{-(d-1)/2+o(1)}$. This extends the planar case considered by Chen, Pach, Szegedy, and Tardos.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"21 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of this paper is to show the existence (using probabilistic tools) of configurations of lines, boxes, and points with certain interesting combinatorial properties. (i) First, we construct a family of $n$ lines in $\mathbb{R}^3$ whose intersection graph is triangle-free of chromatic number $\Omega(n^{1/15})$. This improves the previously best known bound $\Omega(\log\log n)$ by Norin, and is also the first construction of a triangle-free intersection graph of simple geometric objects with polynomial chromatic number. (ii) Second, we construct a set of $n$ points in $\mathbb{R}^d$, whose Delaunay graph with respect to axis-parallel boxes has independence number at most $n\cdot (\log n)^{-(d-1)/2+o(1)}$. This extends the planar case considered by Chen, Pach, Szegedy, and Tardos.
关于盒子的上色线和德劳内图
本文的目的是证明(使用概率工具)具有某些有趣组合性质的线、框和点的构型的存在性。(i)首先,我们在$\mathbb{R}^3$上构造了一族$n$直线,它们的交点图是无色数$\Omega(n^{1/15})$的三角形。这改进了Norin先前最著名的界$\Omega(\log\log n)$,也是第一次构造具有多项式色数的简单几何对象的无三角形相交图。(ii)其次,我们在$\mathbb{R}^d$上构造了一个$n$点的集合,其关于轴平行盒的Delaunay图最多有$n\cdot (\log n)^{-(d-1)/2+o(1)}$个独立数。这扩展了Chen、Pach、Szegedy和Tardos所考虑的平面情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信