Coloring lines and Delaunay graphs with respect to boxes

Pub Date : 2023-10-26 DOI:10.1002/rsa.21193
Tomon, István
{"title":"Coloring lines and Delaunay graphs with respect to boxes","authors":"Tomon, István","doi":"10.1002/rsa.21193","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to show the existence (using probabilistic tools) of configurations of lines, boxes, and points with certain interesting combinatorial properties. (i) First, we construct a family of $n$ lines in $\\mathbb{R}^3$ whose intersection graph is triangle-free of chromatic number $\\Omega(n^{1/15})$. This improves the previously best known bound $\\Omega(\\log\\log n)$ by Norin, and is also the first construction of a triangle-free intersection graph of simple geometric objects with polynomial chromatic number. (ii) Second, we construct a set of $n$ points in $\\mathbb{R}^d$, whose Delaunay graph with respect to axis-parallel boxes has independence number at most $n\\cdot (\\log n)^{-(d-1)/2+o(1)}$. This extends the planar case considered by Chen, Pach, Szegedy, and Tardos.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of this paper is to show the existence (using probabilistic tools) of configurations of lines, boxes, and points with certain interesting combinatorial properties. (i) First, we construct a family of $n$ lines in $\mathbb{R}^3$ whose intersection graph is triangle-free of chromatic number $\Omega(n^{1/15})$. This improves the previously best known bound $\Omega(\log\log n)$ by Norin, and is also the first construction of a triangle-free intersection graph of simple geometric objects with polynomial chromatic number. (ii) Second, we construct a set of $n$ points in $\mathbb{R}^d$, whose Delaunay graph with respect to axis-parallel boxes has independence number at most $n\cdot (\log n)^{-(d-1)/2+o(1)}$. This extends the planar case considered by Chen, Pach, Szegedy, and Tardos.
分享
查看原文
关于盒子的上色线和德劳内图
本文的目的是证明(使用概率工具)具有某些有趣组合性质的线、框和点的构型的存在性。(i)首先,我们在$\mathbb{R}^3$上构造了一族$n$直线,它们的交点图是无色数$\Omega(n^{1/15})$的三角形。这改进了Norin先前最著名的界$\Omega(\log\log n)$,也是第一次构造具有多项式色数的简单几何对象的无三角形相交图。(ii)其次,我们在$\mathbb{R}^d$上构造了一个$n$点的集合,其关于轴平行盒的Delaunay图最多有$n\cdot (\log n)^{-(d-1)/2+o(1)}$个独立数。这扩展了Chen、Pach、Szegedy和Tardos所考虑的平面情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信