{"title":"An Alternative Equation for Generalized Polynomials of Degree Two","authors":"Zoltán Boros, Rayene Menzer","doi":"10.2478/amsil-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider a generalized polynomial f : ℝ → ℝ of degree two that satisfies the additional equation f ( x ) f ( y ) = 0 for the pairs ( x, y ) ∈ D , where D ⊆ ℝ 2 is given by some algebraic condition. In the particular cases when there exists a positive rational m fulfilling <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mi>D</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>ℝ</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>|</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>-</m:mo> <m:mi>m</m:mi> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> D = \\left\\{ {\\left( {x,y} \\right) \\in \\mathbb{R}{^2}|{x^2} - m{y^2} = 1} \\right\\}, we prove that f ( x ) = 0 for all x ∈ ℝ.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"56 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper we consider a generalized polynomial f : ℝ → ℝ of degree two that satisfies the additional equation f ( x ) f ( y ) = 0 for the pairs ( x, y ) ∈ D , where D ⊆ ℝ 2 is given by some algebraic condition. In the particular cases when there exists a positive rational m fulfilling D={(x,y)∈ℝ2|x2-my2=1}, D = \left\{ {\left( {x,y} \right) \in \mathbb{R}{^2}|{x^2} - m{y^2} = 1} \right\}, we prove that f ( x ) = 0 for all x ∈ ℝ.