C. Ю. Бабич, Н. О. Ярецька, В. Ф. Лазар, М. В. Микоряк
{"title":"Числовий розв'язок контактної задачі для попередньо напруженого циліндричного штампа та двох півпросторів з початковими напруженнями","authors":"C. Ю. Бабич, Н. О. Ярецька, В. Ф. Лазар, М. В. Микоряк","doi":"10.24144/2616-7700.2023.42(1).115-128","DOIUrl":null,"url":null,"abstract":"Стаття присвячена розв'язку контактної задачі для попередньо напруженого циліндричного штампа та двох пружних півпросторів з початковими напруженнями в аналітичному вигляді без врахування сил тертя. Будемо вважати, що поверхні поза межею контакту залишаються вільними від впливу зовнішніх сил, а на межі контакту переміщення та напруження — неперервні. Задачу розв'язано у випадку нерівних коренів визначального рівняння.
 Дослідження представлено у загальному виді для теорії великих початкових деформацій і двох варіантів теорії малих початкових деформацій у межах лінеаризованої теорії пружності при довільній структурі пружного потенціалу. Припускається, що початкові стани пружного циліндричного штампа та пружних основ (півпросторів) однорідні та рівні. Дослідження проводиться в координатах початкового деформованого стану, які пов'язані з лагранжевими координатами (природного стану). Крім того, вплив циліндричного штампа викликає невеликі збурення відповідних величин основного напружено-деформованого стану. Також передбачається, що пружний циліндричний штамп та пружні півпростори виготовлені з різних ізотропних, трансверсально-ізотропних або композитних матеріалів. У випадку ортотропних тіл, будемо вважати, що пружно-еквівалентні напрямки співпадають із напрямком осей координат у деформованому стані. У результаті, розв'язки поставленої задачі представлені у вигляді нескінченних рядів, коефіцієнти яких визначаються з нескінченної системи алгебраїчних рівнянь.
 Для дослідження задачі використовується велика кількість фундаментальних результатів таких як: перетворення Ханкеля, парні інтегральні рівняння, ортогональні поліноми та інші методи теорії контактних задач лінійної теорії пружності. Числовий аналіз представлений для потенціалу Трелоара у вигляді графіків. Відзначено достатній вплив початкових (залишкових) напружень у двох пружних півпросторах та пружному циліндричному штампі на розподіл контактних напружень в області контакту.","PeriodicalId":499861,"journal":{"name":"Naukovij vìsnik Užgorodsʹkogo unìversitetu","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovij vìsnik Užgorodsʹkogo unìversitetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2023.42(1).115-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Стаття присвячена розв'язку контактної задачі для попередньо напруженого циліндричного штампа та двох пружних півпросторів з початковими напруженнями в аналітичному вигляді без врахування сил тертя. Будемо вважати, що поверхні поза межею контакту залишаються вільними від впливу зовнішніх сил, а на межі контакту переміщення та напруження — неперервні. Задачу розв'язано у випадку нерівних коренів визначального рівняння.
Дослідження представлено у загальному виді для теорії великих початкових деформацій і двох варіантів теорії малих початкових деформацій у межах лінеаризованої теорії пружності при довільній структурі пружного потенціалу. Припускається, що початкові стани пружного циліндричного штампа та пружних основ (півпросторів) однорідні та рівні. Дослідження проводиться в координатах початкового деформованого стану, які пов'язані з лагранжевими координатами (природного стану). Крім того, вплив циліндричного штампа викликає невеликі збурення відповідних величин основного напружено-деформованого стану. Також передбачається, що пружний циліндричний штамп та пружні півпростори виготовлені з різних ізотропних, трансверсально-ізотропних або композитних матеріалів. У випадку ортотропних тіл, будемо вважати, що пружно-еквівалентні напрямки співпадають із напрямком осей координат у деформованому стані. У результаті, розв'язки поставленої задачі представлені у вигляді нескінченних рядів, коефіцієнти яких визначаються з нескінченної системи алгебраїчних рівнянь.
Для дослідження задачі використовується велика кількість фундаментальних результатів таких як: перетворення Ханкеля, парні інтегральні рівняння, ортогональні поліноми та інші методи теорії контактних задач лінійної теорії пружності. Числовий аналіз представлений для потенціалу Трелоара у вигляді графіків. Відзначено достатній вплив початкових (залишкових) напружень у двох пружних півпросторах та пружному циліндричному штампі на розподіл контактних напружень в області контакту.