Manogna Ammalladene-Venkata, Omkar Halbe, Christian Seidel, Christine Groitl, Lothar Kramel, Christoph Stahl, Heiko Seidel
{"title":"Deep Learning Based Obstacle Awareness from Airborne Optical Sensors","authors":"Manogna Ammalladene-Venkata, Omkar Halbe, Christian Seidel, Christine Groitl, Lothar Kramel, Christoph Stahl, Heiko Seidel","doi":"10.4050/jahs.68.042012","DOIUrl":null,"url":null,"abstract":"Aviation statistics identify collision with terrain and obstacles as a leading cause of helicopter accidents. Assisting helicopter pilots in detecting the presence of obstacles can greatly mitigate the risk of collisions. However, only a limited number of helicopters in operation have an installed helicopter terrain awareness and warning system (HTAWS), while the cost of active obstacle warning systems remains prohibitive for many civil operators. In this work, we apply machine learning to automate obstacle detection and classification in combination with commercially available airborne optical sensors. While numerous techniques for learning-based object detection have been published in the literature, many of them are data and computation intensive. Our approach seeks to balance the detection and classification accuracy of the method with the size of the training data required and the runtime. Specifically, our approach combines the invariant feature extraction ability of pretrained deep convolutional neural networks (CNNs) and the high-speed training and classification ability of a novel, proprietary frequency-domain support vector machine (SVM) method. We describe our experimental setup comprising the CNN + SVM model and datasets of predefined classes of obstacles—pylons, chimneys, antennas, TV towers, wind turbines, helicopters—synthesized from prerecorded airborne video sequences of low-altitude helicopter flight. We analyze the detection performance using average precision, average recall, and runtime performance metrics on representative test data. Finally, we present a simple architecture for real-time, onboard implementation and discuss the obstacle detection performance of recently concluded flight tests.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"27 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.68.042012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Aviation statistics identify collision with terrain and obstacles as a leading cause of helicopter accidents. Assisting helicopter pilots in detecting the presence of obstacles can greatly mitigate the risk of collisions. However, only a limited number of helicopters in operation have an installed helicopter terrain awareness and warning system (HTAWS), while the cost of active obstacle warning systems remains prohibitive for many civil operators. In this work, we apply machine learning to automate obstacle detection and classification in combination with commercially available airborne optical sensors. While numerous techniques for learning-based object detection have been published in the literature, many of them are data and computation intensive. Our approach seeks to balance the detection and classification accuracy of the method with the size of the training data required and the runtime. Specifically, our approach combines the invariant feature extraction ability of pretrained deep convolutional neural networks (CNNs) and the high-speed training and classification ability of a novel, proprietary frequency-domain support vector machine (SVM) method. We describe our experimental setup comprising the CNN + SVM model and datasets of predefined classes of obstacles—pylons, chimneys, antennas, TV towers, wind turbines, helicopters—synthesized from prerecorded airborne video sequences of low-altitude helicopter flight. We analyze the detection performance using average precision, average recall, and runtime performance metrics on representative test data. Finally, we present a simple architecture for real-time, onboard implementation and discuss the obstacle detection performance of recently concluded flight tests.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine