{"title":"3-D Face Morphing Attacks: Generation, Vulnerability and Detection","authors":"Jag Mohan Singh;Raghavendra Ramachandra","doi":"10.1109/TBIOM.2023.3324684","DOIUrl":null,"url":null,"abstract":"Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the proposed 3D morph-generation scheme against automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 1","pages":"103-117"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10286232","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10286232/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the proposed 3D morph-generation scheme against automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques.