{"title":"Attitude Takeover Control of Failed Spacecraft via Leader–Followers Adaptive Cooperative Game","authors":"Huai-Ning Wu, Mi Wang","doi":"10.2514/1.i011242","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of microsatellites-based adaptive cooperative game attitude takeover control for a failed spacecraft is investigated. Specifically, a manned microsatellite (leader) and a team of autonomous microsatellites (followers) are ordered to cooperate to complete the attitude control task in an optimal way, in which the control strategy and the cost function (or intent) of the leader are unknown to the followers. Based on the differential game (DG) theory, the microsatellites-based attitude takeover control problem is formulated as a cooperative DG, in which each microsatellite has the individual cost function. A key problem is that the followers must infer the leader’s intent first, that is, retrieve the weighting matrix of the cost function of the leader. To achieve this, a composite adaptive law is introduced for each follower to estimate the feedback gain matrix of the leader by using system state data and the cost functions of other followers; based on this, the leader’s intent is inferred online by minimizing a residual error. Then, the cooperative game control law of each follower is designed by itself, and the Pareto equilibrium of the DG system is achieved. Finally, the effectiveness of the proposed leader–followers adaptive cooperative game control method is verified by a simulation study.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"180 3","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011242","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the problem of microsatellites-based adaptive cooperative game attitude takeover control for a failed spacecraft is investigated. Specifically, a manned microsatellite (leader) and a team of autonomous microsatellites (followers) are ordered to cooperate to complete the attitude control task in an optimal way, in which the control strategy and the cost function (or intent) of the leader are unknown to the followers. Based on the differential game (DG) theory, the microsatellites-based attitude takeover control problem is formulated as a cooperative DG, in which each microsatellite has the individual cost function. A key problem is that the followers must infer the leader’s intent first, that is, retrieve the weighting matrix of the cost function of the leader. To achieve this, a composite adaptive law is introduced for each follower to estimate the feedback gain matrix of the leader by using system state data and the cost functions of other followers; based on this, the leader’s intent is inferred online by minimizing a residual error. Then, the cooperative game control law of each follower is designed by itself, and the Pareto equilibrium of the DG system is achieved. Finally, the effectiveness of the proposed leader–followers adaptive cooperative game control method is verified by a simulation study.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.