Selection of Explanatory Variables for Linear Regression Models Estimated on Regional Panel Data

Mieczysław Kowerski
{"title":"Selection of Explanatory Variables for Linear Regression Models Estimated on Regional Panel Data","authors":"Mieczysław Kowerski","doi":"10.56583/br.2141","DOIUrl":null,"url":null,"abstract":"One of the problems in estimating of a single-equation linear regression model is the selection of explanatory variables. While many methods of selecting variables for models estimated on the basis of time series or cross-sectional data have been developed, there are no such methods of selecting variables for panel data models. The lack of an appropriate method for selecting variables for linear panel data models may lead to incorrect parameter values for some variables, which makes it difficult and sometimes even impossible to interpret the results of estimated model. Methods of selecting variables for panel data models cannot be based on the Pearson linear correlation coefficient. Therefore, a three-step procedure of variable selection for linear panel data models has been proposed, providing the correct parameter signs for all selected variables. The procedure is illustrated with the selection of variables for panel data models with fixed effects of the average annual unemployment rate according to Labor Force Survey (LFS) in Polish voivodships in the years 2010-2021 (balanced panel consisting of 192 observations).","PeriodicalId":474233,"journal":{"name":"Barometr Regionalny","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Barometr Regionalny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56583/br.2141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the problems in estimating of a single-equation linear regression model is the selection of explanatory variables. While many methods of selecting variables for models estimated on the basis of time series or cross-sectional data have been developed, there are no such methods of selecting variables for panel data models. The lack of an appropriate method for selecting variables for linear panel data models may lead to incorrect parameter values for some variables, which makes it difficult and sometimes even impossible to interpret the results of estimated model. Methods of selecting variables for panel data models cannot be based on the Pearson linear correlation coefficient. Therefore, a three-step procedure of variable selection for linear panel data models has been proposed, providing the correct parameter signs for all selected variables. The procedure is illustrated with the selection of variables for panel data models with fixed effects of the average annual unemployment rate according to Labor Force Survey (LFS) in Polish voivodships in the years 2010-2021 (balanced panel consisting of 192 observations).
区域面板数据估计线性回归模型解释变量的选择
单方程线性回归模型的估计问题之一是解释变量的选择。虽然已经开发了许多基于时间序列或截面数据估计的模型选择变量的方法,但还没有这样的面板数据模型选择变量的方法。线性面板数据模型缺乏适当的变量选择方法,可能导致某些变量的参数值不正确,从而使估计模型的结果难以解释,有时甚至无法解释。面板数据模型的变量选择方法不能基于Pearson线性相关系数。因此,提出了线性面板数据模型变量选择的三步程序,为所有选择的变量提供正确的参数符号。根据2010-2021年波兰各省劳动力调查(LFS)(由192个观察值组成的平衡面板),对具有固定影响的平均年失业率的面板数据模型的变量选择说明了该程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信