Alireza Tabibzadeh, Mohammad Hadi Karbalaie Niya, Hossein Keyvani, Sajad Karampoor, Parastoo Yousefi, Mohammad Hossein Razizadeh, Leila Mousavizadeh, Maryam Esghaei
{"title":"A survey of ORF8 sequence and immunoinformatics features during alpha, delta, and wild type peaks of the SARS-CoV-2 pandemic in Iran","authors":"Alireza Tabibzadeh, Mohammad Hadi Karbalaie Niya, Hossein Keyvani, Sajad Karampoor, Parastoo Yousefi, Mohammad Hossein Razizadeh, Leila Mousavizadeh, Maryam Esghaei","doi":"10.4314/mmj.v35i2.5","DOIUrl":null,"url":null,"abstract":"BackgroundThe Coronavirus disease 2019 (COVID-19) pandemic influences all around the world. The SARS-CoV-2 ORF8 accessory gene represents multiple functions in virus-host interaction. The current study aimed to compare the ORF8 substitutions and epitope features of these substitutions in the various SARS-CoV-2 outbreaks including delta, alpha, and wild type variants in Iran from 2020 to 2022. In addition, we evaluate B cell, HLA I and II epitopes, by in-silico approach to ORF8 binding site prediction.MethodsThe samples were collected from patients diagnosed with SARS-CoV-2 infection via a real-time PCR assay. Then, a conventional PCR was carried out for ORF8 mutations analysis and further Sanger sequencing. Possible important alterations in epitope features of the ORF8 were evaluated by epitope mapping. B cell, HLA class I and II epitopes, evaluated by online databases ABCpred, NetMHCpan-4.1, and NetMHCIIpan-3.2, respectively.Results The current study results could not represent novel variations in seven full-length ORF8 sequences or major ORF8 deletions in 80 evaluated samples. In addition, we could not find any ORF8 Δ382 during each outbreak of variants. Epitope mapping represents differences between the Alpha and other variants, especially in B cell potential epitopes and HLA I.ConclusionThe immunoinformatic evaluation of ORF8 suggested epitopes represent major differences for the Alpha variant in comparison with other variants. In addition, having mild pathogenesis of the Omicron variant does not seem to be associated with ORF8 alteration by phylogenetic evaluation. Future in-vitro studies for a clear conclusion about the epitope features of ORF8 are required.","PeriodicalId":18185,"journal":{"name":"Malawi Medical Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malawi Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/mmj.v35i2.5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundThe Coronavirus disease 2019 (COVID-19) pandemic influences all around the world. The SARS-CoV-2 ORF8 accessory gene represents multiple functions in virus-host interaction. The current study aimed to compare the ORF8 substitutions and epitope features of these substitutions in the various SARS-CoV-2 outbreaks including delta, alpha, and wild type variants in Iran from 2020 to 2022. In addition, we evaluate B cell, HLA I and II epitopes, by in-silico approach to ORF8 binding site prediction.MethodsThe samples were collected from patients diagnosed with SARS-CoV-2 infection via a real-time PCR assay. Then, a conventional PCR was carried out for ORF8 mutations analysis and further Sanger sequencing. Possible important alterations in epitope features of the ORF8 were evaluated by epitope mapping. B cell, HLA class I and II epitopes, evaluated by online databases ABCpred, NetMHCpan-4.1, and NetMHCIIpan-3.2, respectively.Results The current study results could not represent novel variations in seven full-length ORF8 sequences or major ORF8 deletions in 80 evaluated samples. In addition, we could not find any ORF8 Δ382 during each outbreak of variants. Epitope mapping represents differences between the Alpha and other variants, especially in B cell potential epitopes and HLA I.ConclusionThe immunoinformatic evaluation of ORF8 suggested epitopes represent major differences for the Alpha variant in comparison with other variants. In addition, having mild pathogenesis of the Omicron variant does not seem to be associated with ORF8 alteration by phylogenetic evaluation. Future in-vitro studies for a clear conclusion about the epitope features of ORF8 are required.
期刊介绍:
Driven and guided by the priorities articulated in the Malawi National Health Research Agenda, the Malawi Medical Journal publishes original research, short reports, case reports, viewpoints, insightful editorials and commentaries that are of high quality, informative and applicable to the Malawian and sub-Saharan Africa regions. Our particular interest is to publish evidence-based research that impacts and informs national health policies and medical practice in Malawi and the broader region.
Topics covered in the journal include, but are not limited to:
- Communicable diseases (HIV and AIDS, Malaria, TB, etc.)
- Non-communicable diseases (Cardiovascular diseases, cancer, diabetes, etc.)
- Sexual and Reproductive Health (Adolescent health, education, pregnancy and abortion, STDs and HIV and AIDS, etc.)
- Mental health
- Environmental health
- Nutrition
- Health systems and health policy (Leadership, ethics, and governance)
- Community systems strengthening research
- Injury, trauma, and surgical disorders