Modified genetic algorithm with novel crossover and mutation operator for travelling salesman problem

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
M.K. SHARMA
{"title":"Modified genetic algorithm with novel crossover and mutation operator for travelling salesman problem","authors":"M.K. SHARMA","doi":"10.14744/sigma.2023.00105","DOIUrl":null,"url":null,"abstract":"In this study, Genetic Algorithm (GA), a sort of randomized direct, iterative search methodology built around natural selection, is employ in computers to discover approximations of solutions to optimisation and search issues. GA employs operators including selection, crossover, and mutation to tackle. In case of NP-hard issues, particularly for travelling salesman problem (TSP), the GAs is beneficial. To reduce the overall distance, we propose a novel crossover operator with its python code for the TSP. Along with the Python pseudo coding, we additionally introduced a mutation operator to enhance the consummation of GA in determining the shortest distance in the TSP. To emphasize the proposed crossover and mutation operator, we also illustrate different steps using examples. We integrated path representation with our developed crossover and mutation operator as it is apparent method to represent a tour.","PeriodicalId":45000,"journal":{"name":"Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik ve Fen Bilimleri Dergisi","volume":"21 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik ve Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/sigma.2023.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Genetic Algorithm (GA), a sort of randomized direct, iterative search methodology built around natural selection, is employ in computers to discover approximations of solutions to optimisation and search issues. GA employs operators including selection, crossover, and mutation to tackle. In case of NP-hard issues, particularly for travelling salesman problem (TSP), the GAs is beneficial. To reduce the overall distance, we propose a novel crossover operator with its python code for the TSP. Along with the Python pseudo coding, we additionally introduced a mutation operator to enhance the consummation of GA in determining the shortest distance in the TSP. To emphasize the proposed crossover and mutation operator, we also illustrate different steps using examples. We integrated path representation with our developed crossover and mutation operator as it is apparent method to represent a tour.
基于交叉和变异算子的改进遗传算法求解旅行商问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
60
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信