A Swarm-Based Clinical Validation Framework of Artificial Intelligence Solutions for Non-Communicable Diseases

Kitty Kioskli, Spyridon Papastergiou, Theofanis Fotis
{"title":"A Swarm-Based Clinical Validation Framework of Artificial Intelligence Solutions for Non-Communicable Diseases","authors":"Kitty Kioskli, Spyridon Papastergiou, Theofanis Fotis","doi":"10.55708/js0209001","DOIUrl":null,"url":null,"abstract":": Non-communicable diseases (NCDs) present complex challenges in patient care. Artificial Intelligence (AI) offers transformative potential, but its implementation requires addressing key issues. This study proposes a swarm intelligence-inspired clinical validation framework for NCDs, promoting openness, trustworthiness, and continuous self-validation. The framework creates a collaborative environment, connecting healthcare entities, patients, caregivers, and professionals. The swarm-based approach enhances diagnostic accuracy, enables personalized treatment, improves prognosis, supports clinical decision-making, engages patients, enables real-time monitoring, and promotes continuous learning. These implications have the power to revolutionize NCD management and improve patient outcomes.","PeriodicalId":484451,"journal":{"name":"Journal of Engineering Research and Sciences","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55708/js0209001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Non-communicable diseases (NCDs) present complex challenges in patient care. Artificial Intelligence (AI) offers transformative potential, but its implementation requires addressing key issues. This study proposes a swarm intelligence-inspired clinical validation framework for NCDs, promoting openness, trustworthiness, and continuous self-validation. The framework creates a collaborative environment, connecting healthcare entities, patients, caregivers, and professionals. The swarm-based approach enhances diagnostic accuracy, enables personalized treatment, improves prognosis, supports clinical decision-making, engages patients, enables real-time monitoring, and promotes continuous learning. These implications have the power to revolutionize NCD management and improve patient outcomes.
基于群体的非传染性疾病人工智能解决方案临床验证框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信