Convergence of a Sinusoidal Series <img src="http://admin.scirp.org/Editer/attached/image/Edit_c968cdc3-91fd-4acb-b578-9ca79630f301.png" alt="" /> with an Infinite Integral <img src="http://admin.scirp.org/Editer/attached/image/Edit_cda13bba-a868-4bfa-af29-127663f209ce.png" alt="" />

IF 0.5 Q3 MATHEMATICS
Fate Shan, Liping Zhu
{"title":"Convergence of a Sinusoidal Series <img src="http://admin.scirp.org/Editer/attached/image/Edit_c968cdc3-91fd-4acb-b578-9ca79630f301.png" alt="" /> with an Infinite Integral <img src="http://admin.scirp.org/Editer/attached/image/Edit_cda13bba-a868-4bfa-af29-127663f209ce.png" alt="" />","authors":"Fate Shan, Liping Zhu","doi":"10.4236/apm.2023.1310044","DOIUrl":null,"url":null,"abstract":"In this paper, we study the relationship between the convergence of the sinusoidal series and the infinity integrals (any real number α ∈[0,1], parameter p > 0). First of all, we study the convergence of the series (any real number α ∈[0,1], parameter p > 0), mainly using the estimation property of the order to obtain that the series diverges when 0 p ≤1-α, the series converges conditionally when 1-α p ≤1, and the series converges absolutely when p >1. In the next part, we study the convergence state of the infinite integral (any real number α ∈[0,1], parameter p > 0), and get that when 0 p ≤1-α, the infinite integral diverges; when 1-α p ≤1, the infinite integral conditionally converges; when p >1, the infinite integral absolutely converges. Comparison of the conclusions of the above theorem, it is not difficult to derive the theorem: the level of and the infinity integral with the convergence of the state (any real number α ∈[0,1], the parameter p >0), thus promoting the textbook of the two with the convergence of the state requires the function of the general term or the product of the function must be monotonically decreasing conditions.","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":"56 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/apm.2023.1310044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the relationship between the convergence of the sinusoidal series and the infinity integrals (any real number α ∈[0,1], parameter p > 0). First of all, we study the convergence of the series (any real number α ∈[0,1], parameter p > 0), mainly using the estimation property of the order to obtain that the series diverges when 0 p ≤1-α, the series converges conditionally when 1-α p ≤1, and the series converges absolutely when p >1. In the next part, we study the convergence state of the infinite integral (any real number α ∈[0,1], parameter p > 0), and get that when 0 p ≤1-α, the infinite integral diverges; when 1-α p ≤1, the infinite integral conditionally converges; when p >1, the infinite integral absolutely converges. Comparison of the conclusions of the above theorem, it is not difficult to derive the theorem: the level of and the infinity integral with the convergence of the state (any real number α ∈[0,1], the parameter p >0), thus promoting the textbook of the two with the convergence of the state requires the function of the general term or the product of the function must be monotonically decreasing conditions.
正弦级数的收敛性<img src="http://admin.scirp.org/Editer/attached/image/Edit_c968cdc3-91fd-4acb-b578-9ca79630f301.png"alt =,“和”;/和gt;无限积分<img src="http://admin.scirp.org/Editer/attached/image/Edit_cda13bba-a868-4bfa-af29-127663f209ce.png"alt =,“和”;/和gt;
本文研究了正弦级数的收敛性与无穷积分(任意实数α∈[0,1],参数p > 0)的关系,首先研究了任意实数α∈[0,1],参数p > 0)级数的收敛性,主要利用阶的估计性质得到了当0 p≤1-α时级数发散,当1-α p≤1时级数有条件收敛,当p >1时级数绝对收敛。在接下来的部分中,我们研究了无限积分(任意实数α∈[0,1],参数p > 0)的收敛状态,得到了当0 p≤1-α时,无限积分发散;当1-α p≤1时,无限积分有条件收敛;当p >1时,无穷积分绝对收敛。比较上述定理的结论,不难推导出以下定理:水平与无穷积分具有收敛性的状态(任意实数α∈[0,1],参数p >0),从而推动教科书中两种具有收敛性的状态要求函数的一般项或函数的乘积必须是单调递减的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信