Boundedness and asymptotic stability in a predator-prey system with density-dependent motilities

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Yunxi Li, Chunlai Mu, Xu Pan
{"title":"Boundedness and asymptotic stability in a predator-prey system with density-dependent motilities","authors":"Yunxi Li, Chunlai Mu, Xu Pan","doi":"10.3934/dcdsb.2023173","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the predator-prey system with density-dependent motilities and pursuit-evasion interaction under homogeneous Neumann boundary conditions. The main obstacle of analysis comes from the term produced by pursuit-evasion interaction. With the $ L^p $-estimate techniques and Moser iteration, we show that the system possesses a global bounded classical solution. Furthermore, with the aid of Lyapunov functional, we establish the asymptotic behavior of solutions to this system under appropriate parameter conditions.","PeriodicalId":51015,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series B","volume":"84 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdsb.2023173","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the predator-prey system with density-dependent motilities and pursuit-evasion interaction under homogeneous Neumann boundary conditions. The main obstacle of analysis comes from the term produced by pursuit-evasion interaction. With the $ L^p $-estimate techniques and Moser iteration, we show that the system possesses a global bounded classical solution. Furthermore, with the aid of Lyapunov functional, we establish the asymptotic behavior of solutions to this system under appropriate parameter conditions.
具有密度依赖运动的捕食-食饵系统的有界性和渐近稳定性
在齐次诺伊曼边界条件下,研究了具有密度依赖运动和追捕-逃避相互作用的捕食-猎物系统。分析的主要障碍来自于追逃相互作用所产生的术语。利用L^p -估计技术和Moser迭代,证明了该系统具有全局有界经典解。利用Lyapunov泛函,在适当的参数条件下,建立了该系统解的渐近性态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
216
审稿时长
6 months
期刊介绍: Centered around dynamics, DCDS-B is an interdisciplinary journal focusing on the interactions between mathematical modeling, analysis and scientific computations. The mission of the Journal is to bridge mathematics and sciences by publishing research papers that augment the fundamental ways we interpret, model and predict scientific phenomena. The Journal covers a broad range of areas including chemical, engineering, physical and life sciences. A more detailed indication is given by the subject interests of the members of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信