{"title":"Existence of minimizers for non-quasiconvex functionals by strict monotonicity","authors":"Sandro Zagatti","doi":"10.3934/cpaa.2023114","DOIUrl":null,"url":null,"abstract":"We consider functionals of the form $ \\begin{equation*} \\mathcal{F}(u) = \\displaystyle{\\int}_{ \\Omega} f(x, u(x), D u(x))\\, dx, \\quad u\\in u_0 + W_0^{1, r}( \\Omega, {\\mathbb{R}^m}), \\end{equation*} $ where the integrand $ f = f(x, p, \\xi): \\Omega\\times \\mathbb{R}^m\\times \\mathbb{M}^{m\\times n} \\to \\mathbb{R} $ is assumed to be non-quasiconvex in the last variable and $ u_0 $ is an arbitrary boundary value. We study the minimum problem by the introduction of the lower quasiconvex envelope $ \\overline{f} $ of $ f $ and of the relaxed functional$ \\begin{equation*} \\overline{\\mathcal{F}}(u) = \\displaystyle{\\int}_{ \\Omega} \\overline{f}(x, u(x), D u(x))\\, dx, \\quad u\\in u_0 + W_0^{1, r}( \\Omega, {\\mathbb{R}^m}), \\end{equation*} $imposing standard differentiability and growth properties on $ \\overline{f} $. Then we assume the quasiaffinity of $ \\overline{f} $ on the set in which $ f> \\overline{f} $ and the strict monotonicity of the map $ \\mathbb{R}\\ni p^i \\mapsto \\overline{f}(x, p, \\xi) $, where $ p^i $ is a single scalar component of the vector function variable $ p $, showing that any minimizer of $ \\overline{\\mathcal{F}} $ minimizes $ \\mathcal{F} $ too.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"22 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023114","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider functionals of the form $ \begin{equation*} \mathcal{F}(u) = \displaystyle{\int}_{ \Omega} f(x, u(x), D u(x))\, dx, \quad u\in u_0 + W_0^{1, r}( \Omega, {\mathbb{R}^m}), \end{equation*} $ where the integrand $ f = f(x, p, \xi): \Omega\times \mathbb{R}^m\times \mathbb{M}^{m\times n} \to \mathbb{R} $ is assumed to be non-quasiconvex in the last variable and $ u_0 $ is an arbitrary boundary value. We study the minimum problem by the introduction of the lower quasiconvex envelope $ \overline{f} $ of $ f $ and of the relaxed functional$ \begin{equation*} \overline{\mathcal{F}}(u) = \displaystyle{\int}_{ \Omega} \overline{f}(x, u(x), D u(x))\, dx, \quad u\in u_0 + W_0^{1, r}( \Omega, {\mathbb{R}^m}), \end{equation*} $imposing standard differentiability and growth properties on $ \overline{f} $. Then we assume the quasiaffinity of $ \overline{f} $ on the set in which $ f> \overline{f} $ and the strict monotonicity of the map $ \mathbb{R}\ni p^i \mapsto \overline{f}(x, p, \xi) $, where $ p^i $ is a single scalar component of the vector function variable $ p $, showing that any minimizer of $ \overline{\mathcal{F}} $ minimizes $ \mathcal{F} $ too.
期刊介绍:
CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.