Distance Laplacian Spectral Radius of the Complements of Trees and Unicyclic Graphs

Pub Date : 2023-01-01 DOI:10.11650/tjm/231002
Kang Liu, Dan Li, Yuanyuan Chen
{"title":"Distance Laplacian Spectral Radius of the Complements of Trees and Unicyclic Graphs","authors":"Kang Liu, Dan Li, Yuanyuan Chen","doi":"10.11650/tjm/231002","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph and $D^{L}(G) = \\operatorname{Tr}(G) - D(G)$ be the distance Laplacian matrix of $G$, where $\\operatorname{Tr}(G)$ and $D(G)$ are diagonal matrix with vertex transmissions of $G$ and distance matrix of $G$, respectively. The $D^{L}$-spectral radius of $G$ is defined as the largest absolute value of the distance Laplacian eigenvalues of $G$. In this paper, we characterize the unique extremal graphs which maximize the $D^{L}$-spectral radius among the complements of trees and unicyclic graphs, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/231002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a connected graph and $D^{L}(G) = \operatorname{Tr}(G) - D(G)$ be the distance Laplacian matrix of $G$, where $\operatorname{Tr}(G)$ and $D(G)$ are diagonal matrix with vertex transmissions of $G$ and distance matrix of $G$, respectively. The $D^{L}$-spectral radius of $G$ is defined as the largest absolute value of the distance Laplacian eigenvalues of $G$. In this paper, we characterize the unique extremal graphs which maximize the $D^{L}$-spectral radius among the complements of trees and unicyclic graphs, respectively.
分享
查看原文
树与单环图补的距离拉普拉斯谱半径
设$G$为连通图,$D^{L}(G) = \operatorname{Tr}(G) - D(G)$为$G$的距离拉普拉斯矩阵,其中$\operatorname{Tr}(G)$和$D(G)$分别为$G$的顶点传输的对角矩阵和$G$的距离矩阵。$G$的$D^{L}$-谱半径定义为$G$的距离拉普拉斯特征值的最大绝对值。本文分别刻画了在树和单环图的补中,使$D^{L}$-谱半径最大的唯一极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信