High‐performance liquid chromatography‐based assay optimization for the detection of plasma amino acids for applications in metabolic disorders in developing countries

IF 1.3 Q4 CHEMISTRY, ANALYTICAL
Muhammad Wasim, Haq Nawaz Khan, Abdul Tawab, Fazal e Habib, Mazhar Iqbal, Fazli Rabbi Awan
{"title":"High‐performance liquid chromatography‐based assay optimization for the detection of plasma amino acids for applications in metabolic disorders in developing countries","authors":"Muhammad Wasim, Haq Nawaz Khan, Abdul Tawab, Fazal e Habib, Mazhar Iqbal, Fazli Rabbi Awan","doi":"10.1002/sscp.202300119","DOIUrl":null,"url":null,"abstract":"Abstract Plasma amino acids are generally analyzed through ion exchange chromatography, a reproducible but time‐consuming method. Here, we report the optimization of a reverse‐phase‐high‐performance liquid chromatography with fluorescence detector (RP‐HPLC‐FLD) assay for the detection and quantification of plasma amino acids for potential applications in metabolic disorders (e.g., aminoacidopathies, a rare group of Inborn Errors of Metabolism). For assay development, initially standard amino acids were derivatized with ortho‐phthalaldehyde‐3‐mercaptopropionic acid (OPA‐3‐MPA) and filtered through a 0.20 μm syringe filter. The excitation and emission wavelengths of 240–450 nm (λex—λem) were used for the detection of amino acids. Chromatographic separation was achieved by gradient RP‐HPLC‐FLD through C18 symmetry column (150 × 4.6 mm, particle size 3.5 μm). HPLC assay was successfully optimized and was able to detect amino acids in the range of 10–400 ng/mL and good linearity (R 2 > 0.98) was achieved in the mixture for each standard amino acid. Moreover, the current assay showed great efficiency with two additional advantages: the use of low‐cost mobile phases, and the detection and quantification of amino acids at low level (ng/mL) concentration in biofluids. This assay could be applied for the analysis of human plasma to identify aminoacidopathies in newborn screening programs, and other metabolic disorders.","PeriodicalId":21639,"journal":{"name":"SEPARATION SCIENCE PLUS","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEPARATION SCIENCE PLUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202300119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Plasma amino acids are generally analyzed through ion exchange chromatography, a reproducible but time‐consuming method. Here, we report the optimization of a reverse‐phase‐high‐performance liquid chromatography with fluorescence detector (RP‐HPLC‐FLD) assay for the detection and quantification of plasma amino acids for potential applications in metabolic disorders (e.g., aminoacidopathies, a rare group of Inborn Errors of Metabolism). For assay development, initially standard amino acids were derivatized with ortho‐phthalaldehyde‐3‐mercaptopropionic acid (OPA‐3‐MPA) and filtered through a 0.20 μm syringe filter. The excitation and emission wavelengths of 240–450 nm (λex—λem) were used for the detection of amino acids. Chromatographic separation was achieved by gradient RP‐HPLC‐FLD through C18 symmetry column (150 × 4.6 mm, particle size 3.5 μm). HPLC assay was successfully optimized and was able to detect amino acids in the range of 10–400 ng/mL and good linearity (R 2 > 0.98) was achieved in the mixture for each standard amino acid. Moreover, the current assay showed great efficiency with two additional advantages: the use of low‐cost mobile phases, and the detection and quantification of amino acids at low level (ng/mL) concentration in biofluids. This assay could be applied for the analysis of human plasma to identify aminoacidopathies in newborn screening programs, and other metabolic disorders.
基于高效液相色谱法的血浆氨基酸检测优化,用于发展中国家代谢紊乱的应用
血浆氨基酸通常通过离子交换色谱分析,这是一种重复性高但耗时的方法。在这里,我们报告了一种反相高效液相色谱荧光检测器(RP - HPLC - FLD)检测和定量血浆氨基酸的方法的优化,该方法可用于代谢性疾病(例如,氨基酸病,一种罕见的先天性代谢错误)的潜在应用。为了进行分析,首先用邻苯二醛- 3 -巯基丙酸(OPA - 3 - MPA)衍生化标准氨基酸,并通过0.20 μm注射器过滤器过滤。检测氨基酸的激发和发射波长为240 ~ 450 nm (λex -λem)。采用C18对称柱(150 × 4.6 mm,粒径3.5 μm),采用梯度RP - HPLC - FLD进行色谱分离。高效液相色谱法检测范围为10 ~ 400 ng/mL,线性良好(r2 >各标准氨基酸的混合质量为0.98)。此外,目前的分析方法显示出很高的效率,并具有两个额外的优势:使用低成本的流动相,以及在生物流体中低水平(ng/mL)浓度下检测和定量氨基酸。该方法可应用于人血浆分析,以确定新生儿筛查计划中的氨基酸病和其他代谢紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SEPARATION SCIENCE PLUS
SEPARATION SCIENCE PLUS CHEMISTRY, ANALYTICAL-
CiteScore
1.90
自引率
9.10%
发文量
111
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信