Unchaining surgery, branched covers, and pencils on elliptic surfaces

IF 0.6 3区 数学 Q3 MATHEMATICS
Terry Fuller
{"title":"Unchaining surgery, branched covers, and pencils on elliptic surfaces","authors":"Terry Fuller","doi":"10.2140/agt.2023.23.2867","DOIUrl":null,"url":null,"abstract":"We show that every member of an infinite family of symplectic manifolds constructed by R. Inanc Baykur, Kenta Hayano, and Naoyuki Monden (arXiv:1903:02906) is diffeomorphic to an elliptic surface. As a result: (1) the symplectic Calabi-Yau 4-manifolds among their family are diffeomorphic to the standard K3 surface; (2) each elliptic surface E(n) admits a genus g Lefschetz pencil, for all g greater than or equal to n; and (3) each elliptic surface E(n) blown up once admits a pair of inequivalent genus g Lefschetz pencils, for all g greater than or equal to n.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"152 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2867","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We show that every member of an infinite family of symplectic manifolds constructed by R. Inanc Baykur, Kenta Hayano, and Naoyuki Monden (arXiv:1903:02906) is diffeomorphic to an elliptic surface. As a result: (1) the symplectic Calabi-Yau 4-manifolds among their family are diffeomorphic to the standard K3 surface; (2) each elliptic surface E(n) admits a genus g Lefschetz pencil, for all g greater than or equal to n; and (3) each elliptic surface E(n) blown up once admits a pair of inequivalent genus g Lefschetz pencils, for all g greater than or equal to n.
解链手术,分支封面,椭圆表面上的铅笔
我们证明了R. Inanc Baykur, Kenta Hayano和Naoyuki Monden (arXiv:1903:02906)构造的无限辛流形族的每一个成员都是微分同构于椭圆曲面的。结果表明:(1)它们族中的辛Calabi-Yau - 4流形与标准K3曲面是微分同构的;(2)对于所有大于等于n的g,每一个椭圆曲面E(n)都有一个Lefschetz铅笔属g;(3)对于所有大于或等于n的g,每个膨胀一次的椭圆曲面E(n)允许一对不相等的g属Lefschetz铅笔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信