New bounds on maximal linkless graphs

Pub Date : 2023-09-07 DOI:10.2140/agt.2023.23.2545
Ramin Naimi, Andrei Pavelescu, Elena Pavelescu
{"title":"New bounds on maximal linkless graphs","authors":"Ramin Naimi, Andrei Pavelescu, Elena Pavelescu","doi":"10.2140/agt.2023.23.2545","DOIUrl":null,"url":null,"abstract":"We construct a family of maximal linklessly embeddable graphs on $n$ vertices and $3n-5$ edges for all $n\\ge 10$, and another family on $n$ vertices and $m< \\frac{25n}{12}-\\frac{1}{4}$ edges for all $n\\ge 13$. The latter significantly improves the lowest edge-to-vertex ratio for any previously known infinite family. We construct a family of graphs showing that the class of maximal linklessly embeddable graphs differs from the class of graphs that are maximal without a $K_6$ minor studied by L. Jorgensen. We give necessary and sufficient conditions for when the clique sum of two maximal linklessly embeddable graphs over $K_2$, $K_3$, or $K_4$ is a maximal linklessly embeddable graph, and use these results to prove our constructions yield maximal linklessly embeddable graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We construct a family of maximal linklessly embeddable graphs on $n$ vertices and $3n-5$ edges for all $n\ge 10$, and another family on $n$ vertices and $m< \frac{25n}{12}-\frac{1}{4}$ edges for all $n\ge 13$. The latter significantly improves the lowest edge-to-vertex ratio for any previously known infinite family. We construct a family of graphs showing that the class of maximal linklessly embeddable graphs differs from the class of graphs that are maximal without a $K_6$ minor studied by L. Jorgensen. We give necessary and sufficient conditions for when the clique sum of two maximal linklessly embeddable graphs over $K_2$, $K_3$, or $K_4$ is a maximal linklessly embeddable graph, and use these results to prove our constructions yield maximal linklessly embeddable graphs.
分享
查看原文
极大无链接图的新界
我们对所有$n\ge 10$在$n$顶点和$3n-5$边上构造了一个极大无链接嵌入图族,对所有$n\ge 13$在$n$顶点和$m< \frac{25n}{12}-\frac{1}{4}$边上构造了另一个极大无链接嵌入图族。后者显著提高了任何已知无限族的最低边顶点比。我们构造了一个图族,证明了极大无链接可嵌入图的类别不同于L. Jorgensen研究的极大无$K_6$次要图的类别。给出了$K_2$, $K_3$, $K_4$上两个极大无链接可嵌入图的团和是极大无链接可嵌入图的充分必要条件,并用这些结果证明了我们的构造产生极大无链接可嵌入图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信