A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence

IF 0.6 3区 数学 Q3 MATHEMATICS
Artem Kotelskiy, Liam Watson, Claudius Zibrowius
{"title":"A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence","authors":"Artem Kotelskiy, Liam Watson, Claudius Zibrowius","doi":"10.2140/agt.2023.23.2519","DOIUrl":null,"url":null,"abstract":"When $\\mathbf{k}$ is a field, type D structures over the algebra $\\mathbf{k}[u,v]/(uv)$ are equivalent to immersed curves decorated with local systems in the twice-punctured disk. Consequently, knot Floer homology, as a type D structure over $\\mathbf{k}[u,v]/(uv)$, can be viewed as a set of immersed curves. With this observation as a starting point, given a knot $K$ in $S^3$, we realize the immersed curve invariant $\\widehat{\\mathit{HF}}(S^3 \\setminus \\mathring{\\nu}(K))$ [arXiv:1604.03466] by converting the twice-punctured disk to a once-punctured torus via a handle attachment. This recovers a result of Lipshitz, Ozsvath, and Thurston [arXiv:0810.0687] calculating the bordered invariant of $S^3 \\setminus \\mathring{\\nu}(K)$ in terms of the knot Floer homology of $K$.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2519","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

When $\mathbf{k}$ is a field, type D structures over the algebra $\mathbf{k}[u,v]/(uv)$ are equivalent to immersed curves decorated with local systems in the twice-punctured disk. Consequently, knot Floer homology, as a type D structure over $\mathbf{k}[u,v]/(uv)$, can be viewed as a set of immersed curves. With this observation as a starting point, given a knot $K$ in $S^3$, we realize the immersed curve invariant $\widehat{\mathit{HF}}(S^3 \setminus \mathring{\nu}(K))$ [arXiv:1604.03466] by converting the twice-punctured disk to a once-punctured torus via a handle attachment. This recovers a result of Lipshitz, Ozsvath, and Thurston [arXiv:0810.0687] calculating the bordered invariant of $S^3 \setminus \mathring{\nu}(K)$ in terms of the knot Floer homology of $K$.
Lipshitz-Ozsváth-Thurston对应的助记符
当$\mathbf{k}$是一个域时,在代数$\mathbf{k}[u,v]/(uv)$上的D型结构等价于在两次穿孔的磁盘上用局部系统装饰的浸入曲线。因此,结花同调作为$\mathbf{k}[u,v]/(uv)$上的D型结构,可以看作是一组浸入曲线。以这一观察结果为出发点,给定$S^3$中的一个结点$K$,我们通过手柄附件将两次被刺破的圆盘转换为一次被刺破的环面,实现了浸没曲线不变量$\widehat{\mathit{HF}}(S^3 \setminus \ mathing {\nu}(K))$ [arXiv:1604.03466]。本文恢复了Lipshitz, Ozsvath, and Thurston在$K$的结花同调中计算$S^3 \setminus \ maththring {\nu}(K)$的边不变式的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信