{"title":"Hand Gestures Replicating Robot Arm based on MediaPipe","authors":"Muneera Altayeb","doi":"10.52549/ijeei.v11i3.4491","DOIUrl":null,"url":null,"abstract":"A robotic arm is any variety of programmable mechanical devices designed to operate items like a human arm and is one of the most beneficial innovations of the 20th century, quickly becoming a cornerstone of many industries. It can perform a variety of tasks and duties that may be time-consuming, difficult, or dangerous to humans. The gesture-based control interface offers many opportunities for more natural, configurable, and easy human-machine interaction. It can expand the capabilities of the GUI and command line interfaces that we use today with the mouse and keyboard. This work proposed changing the concept of remote controls for operating a hand-operated robotic arm to get rid of buttons and joysticks by replacing them with a more intuitive approach to controlling a robotic arm via the hand gestures of the user. The proposed system performs vision-based hand gesture recognition and a robot arm that can replicate the user's hand gestures using image processing. The system detects and recognizes hand gestures using Python and sends a command to the microcontroller which is the Arduino board connected to the robot arm to replicate the recognized gesture. Five servo motors are connected to the Arduino Nano to control the fingers of the robot arm; These servos are related to the robot arm prototype. It is worth noting that this system was able to repeat the user's hand gestures with an accuracy of up to 96%.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
A robotic arm is any variety of programmable mechanical devices designed to operate items like a human arm and is one of the most beneficial innovations of the 20th century, quickly becoming a cornerstone of many industries. It can perform a variety of tasks and duties that may be time-consuming, difficult, or dangerous to humans. The gesture-based control interface offers many opportunities for more natural, configurable, and easy human-machine interaction. It can expand the capabilities of the GUI and command line interfaces that we use today with the mouse and keyboard. This work proposed changing the concept of remote controls for operating a hand-operated robotic arm to get rid of buttons and joysticks by replacing them with a more intuitive approach to controlling a robotic arm via the hand gestures of the user. The proposed system performs vision-based hand gesture recognition and a robot arm that can replicate the user's hand gestures using image processing. The system detects and recognizes hand gestures using Python and sends a command to the microcontroller which is the Arduino board connected to the robot arm to replicate the recognized gesture. Five servo motors are connected to the Arduino Nano to control the fingers of the robot arm; These servos are related to the robot arm prototype. It is worth noting that this system was able to repeat the user's hand gestures with an accuracy of up to 96%.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).