Conservation laws, exact solutions and nonlinear dispersion: A lie symmetry approach

Adnan Shamaoon, Zartab Ali, Qaisar Maqbool
{"title":"Conservation laws, exact solutions and nonlinear dispersion: A lie symmetry approach","authors":"Adnan Shamaoon, Zartab Ali, Qaisar Maqbool","doi":"10.59400/jam.v1i1.95","DOIUrl":null,"url":null,"abstract":"In this study, we investigated a set of equations that exhibit compact solutions and nonlinear dispersion. We used the classical lie symmetry approach to derive ordinary differential equations (ODEs) that are well suited for qualitative study. By examining the dynamic behavior of these ODEs, we gained insights into the intricate nature of the underlying system. We also used a powerful multiplier approach to establish nontrivial conservation laws and exact solutions for these equations. These conservation laws provide essential information regarding the underlying symmetries and invariants of the system, and shed light on its fundamental properties","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v1i1.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated a set of equations that exhibit compact solutions and nonlinear dispersion. We used the classical lie symmetry approach to derive ordinary differential equations (ODEs) that are well suited for qualitative study. By examining the dynamic behavior of these ODEs, we gained insights into the intricate nature of the underlying system. We also used a powerful multiplier approach to establish nontrivial conservation laws and exact solutions for these equations. These conservation laws provide essential information regarding the underlying symmetries and invariants of the system, and shed light on its fundamental properties
守恒定律,精确解和非线性色散:一个谎言对称方法
在这项研究中,我们研究了一组具有紧解和非线性色散的方程。我们使用经典的李氏对称方法推导出适合定性研究的常微分方程(ode)。通过检查这些ode的动态行为,我们深入了解了底层系统的复杂本质。我们还使用了一个强大的乘数方法来建立这些方程的非平凡守恒定律和精确解。这些守恒定律提供了关于系统潜在的对称性和不变量的基本信息,并阐明了系统的基本性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信