Daniyar Uskenbaev, Adolf Nogai, Alisher Uskenbayev, Kairatbek Zhetpisbayev, Eleonora Nogai, Pavel Dunayev, Ainur Zhetpisbayeva, Artur Nogai
{"title":"Synthesis and Research of Critical Parameters of Bi-HTSC Ceramics Based on Glass Phase Obtained by IR Heating","authors":"Daniyar Uskenbaev, Adolf Nogai, Alisher Uskenbayev, Kairatbek Zhetpisbayev, Eleonora Nogai, Pavel Dunayev, Ainur Zhetpisbayeva, Artur Nogai","doi":"10.3390/chemengineering7050095","DOIUrl":null,"url":null,"abstract":"In this paper influence of the excess Ca and Cu cations on the critical temperature (Tc) and critical transport current density (Jc) of high-temperature superconducting ceramics of the compositions (HTSC) Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy synthesized by the glass-ceramic method has been studied. The synthesis of superconducting ceramics was carried out on the basis of the glass phase, obtained by ultra-fast quenching of the melt. Melting of the mixture of starting components was carried out without the use of a crucible under the influence of IR radiant heating. Analysis of the elemental composition of the samples of the initial precursors showed a significant deviation from stoichiometry in oxygen (increase), as well as a decrease in calcium content. The synthesis of HTSC ceramics was carried out at a temperature of 849–850 °C for 96 h with intermediate grinding every 24 h. Studies of the phase composition of ceramic samples by X-ray diffraction have shown that HTSC ceramics consist only of a superconducting high-temperature phase Bi-2223. Studies of current-carrying characteristics by the four-point probe method according to the criterion of 1 µV/cm2 have shown that high-temperature superconducting ceramics of the compositions Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy have an increased density of critical transport current of 9.12 A/cm2, 7.62 A/cm2 and 7.26 A/cm2, respectively. At the same time, it was found that with a decrease in the content of Ca and Cu cations in HTSC ceramics, an increase in the critical current density is observed.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"49 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7050095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper influence of the excess Ca and Cu cations on the critical temperature (Tc) and critical transport current density (Jc) of high-temperature superconducting ceramics of the compositions (HTSC) Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy synthesized by the glass-ceramic method has been studied. The synthesis of superconducting ceramics was carried out on the basis of the glass phase, obtained by ultra-fast quenching of the melt. Melting of the mixture of starting components was carried out without the use of a crucible under the influence of IR radiant heating. Analysis of the elemental composition of the samples of the initial precursors showed a significant deviation from stoichiometry in oxygen (increase), as well as a decrease in calcium content. The synthesis of HTSC ceramics was carried out at a temperature of 849–850 °C for 96 h with intermediate grinding every 24 h. Studies of the phase composition of ceramic samples by X-ray diffraction have shown that HTSC ceramics consist only of a superconducting high-temperature phase Bi-2223. Studies of current-carrying characteristics by the four-point probe method according to the criterion of 1 µV/cm2 have shown that high-temperature superconducting ceramics of the compositions Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy have an increased density of critical transport current of 9.12 A/cm2, 7.62 A/cm2 and 7.26 A/cm2, respectively. At the same time, it was found that with a decrease in the content of Ca and Cu cations in HTSC ceramics, an increase in the critical current density is observed.