Synthesis and Research of Critical Parameters of Bi-HTSC Ceramics Based on Glass Phase Obtained by IR Heating

IF 2.8 Q2 ENGINEERING, CHEMICAL
Daniyar Uskenbaev, Adolf Nogai, Alisher Uskenbayev, Kairatbek Zhetpisbayev, Eleonora Nogai, Pavel Dunayev, Ainur Zhetpisbayeva, Artur Nogai
{"title":"Synthesis and Research of Critical Parameters of Bi-HTSC Ceramics Based on Glass Phase Obtained by IR Heating","authors":"Daniyar Uskenbaev, Adolf Nogai, Alisher Uskenbayev, Kairatbek Zhetpisbayev, Eleonora Nogai, Pavel Dunayev, Ainur Zhetpisbayeva, Artur Nogai","doi":"10.3390/chemengineering7050095","DOIUrl":null,"url":null,"abstract":"In this paper influence of the excess Ca and Cu cations on the critical temperature (Tc) and critical transport current density (Jc) of high-temperature superconducting ceramics of the compositions (HTSC) Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy synthesized by the glass-ceramic method has been studied. The synthesis of superconducting ceramics was carried out on the basis of the glass phase, obtained by ultra-fast quenching of the melt. Melting of the mixture of starting components was carried out without the use of a crucible under the influence of IR radiant heating. Analysis of the elemental composition of the samples of the initial precursors showed a significant deviation from stoichiometry in oxygen (increase), as well as a decrease in calcium content. The synthesis of HTSC ceramics was carried out at a temperature of 849–850 °C for 96 h with intermediate grinding every 24 h. Studies of the phase composition of ceramic samples by X-ray diffraction have shown that HTSC ceramics consist only of a superconducting high-temperature phase Bi-2223. Studies of current-carrying characteristics by the four-point probe method according to the criterion of 1 µV/cm2 have shown that high-temperature superconducting ceramics of the compositions Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy have an increased density of critical transport current of 9.12 A/cm2, 7.62 A/cm2 and 7.26 A/cm2, respectively. At the same time, it was found that with a decrease in the content of Ca and Cu cations in HTSC ceramics, an increase in the critical current density is observed.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"49 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7050095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper influence of the excess Ca and Cu cations on the critical temperature (Tc) and critical transport current density (Jc) of high-temperature superconducting ceramics of the compositions (HTSC) Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy synthesized by the glass-ceramic method has been studied. The synthesis of superconducting ceramics was carried out on the basis of the glass phase, obtained by ultra-fast quenching of the melt. Melting of the mixture of starting components was carried out without the use of a crucible under the influence of IR radiant heating. Analysis of the elemental composition of the samples of the initial precursors showed a significant deviation from stoichiometry in oxygen (increase), as well as a decrease in calcium content. The synthesis of HTSC ceramics was carried out at a temperature of 849–850 °C for 96 h with intermediate grinding every 24 h. Studies of the phase composition of ceramic samples by X-ray diffraction have shown that HTSC ceramics consist only of a superconducting high-temperature phase Bi-2223. Studies of current-carrying characteristics by the four-point probe method according to the criterion of 1 µV/cm2 have shown that high-temperature superconducting ceramics of the compositions Bi1.6Pb0.4Sr2Ca2.1Cu3.1Oy, Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy and Bi1.6Pb0.4Sr2Ca3Cu4Oy have an increased density of critical transport current of 9.12 A/cm2, 7.62 A/cm2 and 7.26 A/cm2, respectively. At the same time, it was found that with a decrease in the content of Ca and Cu cations in HTSC ceramics, an increase in the critical current density is observed.
红外加热玻璃相Bi-HTSC陶瓷关键参数的合成与研究
本文研究了过量Ca和Cu阳离子对高温超导陶瓷(HTSC) bi1.6 pb0.4 sr2ca2.1 cu3.10 oy、Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy和Bi1.6Pb0.4Sr2Ca3Cu4Oy合成的临界温度(Tc)和临界输运电流密度(Jc)的影响。超导陶瓷的合成是在玻璃相的基础上进行的,该玻璃相是通过对熔体进行超快淬火得到的。在红外辐射加热的影响下,在没有坩埚的情况下进行了起始组分混合物的熔化。对初始前体样品的元素组成分析表明,氧的化学计量有明显的偏差(增加),钙的含量也有所减少。HTSC陶瓷的合成在849 ~ 850℃的温度下进行了96 h的合成,每24 h进行一次中间研磨。通过x射线衍射对陶瓷样品的相组成进行了研究,表明HTSC陶瓷仅由超导高温相Bi-2223组成。以1µV/cm2为标准,用四点探针法研究了高温超导陶瓷的载流特性,结果表明,bi1.6 pb0.4 sr2ca2.1 cu3.10 oy、Bi1.6Pb0.4Sr2Ca2.25Cu3.25Oy和Bi1.6Pb0.4Sr2Ca3Cu4Oy组成的高温超导陶瓷的临界输运电流密度分别提高了9.12、7.62和7.26 A/cm2。同时发现,随着HTSC陶瓷中Ca、Cu阳离子含量的降低,临界电流密度增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信