Inequalities for the polar derivative of a polynomial with restricted zeros

IF 0.5 Q3 MATHEMATICS
W. M. Shah, Raihana Rashid
{"title":"Inequalities for the polar derivative of a polynomial with restricted zeros","authors":"W. M. Shah, Raihana Rashid","doi":"10.1142/s179355712350167x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a polynomial of degree at most [Formula: see text] with real or complex coefficients, then by a prize winning result of Bernstein [Formula: see text] In this paper, we assume that [Formula: see text] has a zero of multiplicity [Formula: see text] at a point inside the unit disc and the remaining zeros outside or inside the disc of radius [Formula: see text] and prove some Bernstein-type inequalities. We also draw the attention of readers to the wrong conclusion of a result due to [Mir and Wani, A note on two recent results about polynomials with restricted zeros, J. Math. Inequalities, 14 (2020) 45–50].","PeriodicalId":45737,"journal":{"name":"Asian-European Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s179355712350167x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let [Formula: see text] be a polynomial of degree at most [Formula: see text] with real or complex coefficients, then by a prize winning result of Bernstein [Formula: see text] In this paper, we assume that [Formula: see text] has a zero of multiplicity [Formula: see text] at a point inside the unit disc and the remaining zeros outside or inside the disc of radius [Formula: see text] and prove some Bernstein-type inequalities. We also draw the attention of readers to the wrong conclusion of a result due to [Mir and Wani, A note on two recent results about polynomials with restricted zeros, J. Math. Inequalities, 14 (2020) 45–50].
具有限制零的多项式的极导数的不等式
设[公式:见文]最多是一个具有实数或复系数的次多项式[公式:见文],那么根据Bernstein[公式:见文]的一个获奖结果,本文假设[公式:见文]在单位圆盘内的某一点上有一个多重性为零[公式:见文],其余的零点在半径[公式:见文]的圆盘外或圆盘内,并证明了一些Bernstein型不等式。我们还提请读者注意,由于[Mir和Wani,关于两个关于限制零多项式的最近结果的注释,J. Math]而得出的结果的错误结论。贫富差距,14(2020):45-50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
169
期刊介绍: Asian-European Journal of Mathematics is an international journal which is devoted to original research in the field of pure and applied mathematics. The aim of the journal is to provide a medium by which new ideas can be discussed among researchers from diverse fields in mathematics. It publishes high quality research papers in the fields of contemporary pure and applied mathematics with a broad range of topics including algebra, analysis, topology, geometry, functional analysis, number theory, differential equations, operational research, combinatorics, theoretical statistics and probability, theoretical computer science and logic. Although the journal focuses on the original research articles, it also welcomes survey articles and short notes. All papers will be peer-reviewed within approximately four months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信