Anomaly Detection in Renewable Energy Big Data Using Deep Learning

Pub Date : 2023-10-10 DOI:10.4018/ijiit.331595
Suzan MohammadAli Katamoura, Mehmet Sabih Aksoy
{"title":"Anomaly Detection in Renewable Energy Big Data Using Deep Learning","authors":"Suzan MohammadAli Katamoura, Mehmet Sabih Aksoy","doi":"10.4018/ijiit.331595","DOIUrl":null,"url":null,"abstract":"This work aims to review the literature on anomaly detection (AD) in renewable energy. Due to the significance of the RE data quality and sensor performance, it is crucial to ensure that the measurement device works correctly and maintains data accuracy. The review identifies the relevant studies on big data anomaly detection in the energy field and synthesizes the related techniques. Also, the study shows a need for segmentation annotations for solar system electroluminescence imagery complicating the domain development of anomaly segmentation approaches. Consequently, most processes create machine learning (ML) models using semi-supervised techniques. Still, these approaches need more generalization regarding variation in environmental or systematic conditions. Furthermore, the studies discussed here focus on existing algorithms that used big data and AD to propose an improved analysis framework. Finally, the work presents a framework to solve the problem of identifying sensors' issues that will appear in data anomalies.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijiit.331595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to review the literature on anomaly detection (AD) in renewable energy. Due to the significance of the RE data quality and sensor performance, it is crucial to ensure that the measurement device works correctly and maintains data accuracy. The review identifies the relevant studies on big data anomaly detection in the energy field and synthesizes the related techniques. Also, the study shows a need for segmentation annotations for solar system electroluminescence imagery complicating the domain development of anomaly segmentation approaches. Consequently, most processes create machine learning (ML) models using semi-supervised techniques. Still, these approaches need more generalization regarding variation in environmental or systematic conditions. Furthermore, the studies discussed here focus on existing algorithms that used big data and AD to propose an improved analysis framework. Finally, the work presents a framework to solve the problem of identifying sensors' issues that will appear in data anomalies.
分享
查看原文
基于深度学习的可再生能源大数据异常检测
本文旨在对可再生能源异常检测(AD)的相关文献进行综述。由于RE数据质量和传感器性能的重要性,确保测量装置正常工作并保持数据精度至关重要。综述了能源领域大数据异常检测的相关研究,综合了相关技术。此外,该研究还表明,需要对太阳系电致发光图像进行分割注释,使异常分割方法的领域发展复杂化。因此,大多数过程使用半监督技术创建机器学习(ML)模型。尽管如此,这些方法在环境或系统条件的变化方面需要更多的推广。此外,本文讨论的研究侧重于现有算法,这些算法使用大数据和AD提出了改进的分析框架。最后,本文提出了一个框架来解决识别数据异常中可能出现的传感器问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信