On the mathematical replication of the MacKay effect from redundant stimulation

Tamekue, Cyprien, Prandi, Dario, Chitour, Yacine
{"title":"On the mathematical replication of the MacKay effect from redundant\n stimulation","authors":"Tamekue, Cyprien, Prandi, Dario, Chitour, Yacine","doi":"10.48550/arxiv.2311.07338","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the intricate connection between visual perception and the mathematical modelling of neural activity in the primary visual cortex (V1), focusing on replicating the MacKay effect [Mackay, Nature 1957]. While bifurcation theory has been a prominent mathematical approach for addressing issues in neuroscience, especially in describing spontaneous pattern formations in V1 due to parameter changes, it faces challenges in scenarios with localised sensory inputs. This is evident, for instance, in Mackay's psychophysical experiments, where the redundancy of visual stimuli information results in irregular shapes, making bifurcation theory and multi-scale analysis less effective. To address this, we follow a mathematical viewpoint based on the input-output controllability of an Amari-type neural fields model. This framework views the sensory input as a control function, cortical representation via the retino-cortical map of the visual stimulus that captures the distinct features of the stimulus, specifically the central redundancy in MacKay's funnel pattern ``MacKay rays''. From a control theory point of view, the exact controllability property of the Amari-type equation is discussed both for linear and nonlinear response functions. Then, applied to the MacKay effect replication, we adjust the parameter representing intra-neuron connectivity to ensure that, in the absence of sensory input, cortical activity exponentially stabilises to the stationary state that we perform quantitative and qualitative studies to show that it captures all the essential features of the induced after-image reported by MacKay","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the intricate connection between visual perception and the mathematical modelling of neural activity in the primary visual cortex (V1), focusing on replicating the MacKay effect [Mackay, Nature 1957]. While bifurcation theory has been a prominent mathematical approach for addressing issues in neuroscience, especially in describing spontaneous pattern formations in V1 due to parameter changes, it faces challenges in scenarios with localised sensory inputs. This is evident, for instance, in Mackay's psychophysical experiments, where the redundancy of visual stimuli information results in irregular shapes, making bifurcation theory and multi-scale analysis less effective. To address this, we follow a mathematical viewpoint based on the input-output controllability of an Amari-type neural fields model. This framework views the sensory input as a control function, cortical representation via the retino-cortical map of the visual stimulus that captures the distinct features of the stimulus, specifically the central redundancy in MacKay's funnel pattern ``MacKay rays''. From a control theory point of view, the exact controllability property of the Amari-type equation is discussed both for linear and nonlinear response functions. Then, applied to the MacKay effect replication, we adjust the parameter representing intra-neuron connectivity to ensure that, in the absence of sensory input, cortical activity exponentially stabilises to the stationary state that we perform quantitative and qualitative studies to show that it captures all the essential features of the induced after-image reported by MacKay
冗余刺激下麦凯效应的数学复制
在这项研究中,我们研究了视觉感知和初级视觉皮层(V1)神经活动的数学模型之间的复杂联系,重点是复制MacKay效应[MacKay, Nature 1957]。虽然分岔理论一直是解决神经科学问题的重要数学方法,特别是在描述V1由于参数变化而自发形成的模式时,但它在具有局部感觉输入的情况下面临挑战。例如,在麦凯的心理物理实验中,这一点很明显,视觉刺激信息的冗余导致了不规则的形状,使得分岔理论和多尺度分析变得不那么有效。为了解决这个问题,我们遵循基于amari型神经场模型的输入-输出可控性的数学观点。该框架将感觉输入视为一种控制功能,通过视觉刺激的视网膜-皮层图进行皮层表征,该图捕捉到刺激的不同特征,特别是麦凯漏斗模式“麦凯射线”中的中心冗余。从控制论的角度,讨论了线性响应函数和非线性响应函数的amari型方程的精确可控性。然后,应用于MacKay效应复制,我们调整代表神经元内连接的参数,以确保在没有感觉输入的情况下,皮层活动指数稳定到固定状态,我们进行定量和定性研究,以表明它捕获了MacKay报告的诱导后像的所有基本特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信