Dynamic mode decomposition of nonequilibrium electron-phonon dynamics: accelerating the first-principles real-time Boltzmann equation

Maliyov, Ivan, Yin, Jia, Yao, Jia, Yang, Chao, Bernardi, Marco
{"title":"Dynamic mode decomposition of nonequilibrium electron-phonon dynamics:\n accelerating the first-principles real-time Boltzmann equation","authors":"Maliyov, Ivan, Yin, Jia, Yao, Jia, Yang, Chao, Bernardi, Marco","doi":"10.48550/arxiv.2311.07520","DOIUrl":null,"url":null,"abstract":"Nonequilibrium dynamics governed by electron-phonon (e-ph) interactions plays a key role in electronic devices and spectroscopies and is central to understanding electronic excitations in materials. The real-time Boltzmann transport equation (rt-BTE) with collision processes computed from first principles can describe the coupled dynamics of electrons and atomic vibrations (phonons). Yet, a bottleneck of these simulations is the calculation of e-ph scattering integrals on dense momentum grids at each time step. Here we show a data-driven approach based on dynamic mode decomposition (DMD) that can accelerate the time propagation of the rt-BTE and identify dominant electronic processes. We apply this approach to two case studies, high-field charge transport and ultrafast excited electron relaxation. In both cases, simulating only a short time window of ~10% of the dynamics suffices to predict the dynamics from initial excitation to steady state using DMD extrapolation. Analysis of the momentum-space modes extracted from DMD sheds light on the microscopic mechanisms governing electron relaxation to steady state or equilibrium. The combination of accuracy and efficiency makes our DMD-based method a valuable tool for investigating ultrafast dynamics in a wide range of materials.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonequilibrium dynamics governed by electron-phonon (e-ph) interactions plays a key role in electronic devices and spectroscopies and is central to understanding electronic excitations in materials. The real-time Boltzmann transport equation (rt-BTE) with collision processes computed from first principles can describe the coupled dynamics of electrons and atomic vibrations (phonons). Yet, a bottleneck of these simulations is the calculation of e-ph scattering integrals on dense momentum grids at each time step. Here we show a data-driven approach based on dynamic mode decomposition (DMD) that can accelerate the time propagation of the rt-BTE and identify dominant electronic processes. We apply this approach to two case studies, high-field charge transport and ultrafast excited electron relaxation. In both cases, simulating only a short time window of ~10% of the dynamics suffices to predict the dynamics from initial excitation to steady state using DMD extrapolation. Analysis of the momentum-space modes extracted from DMD sheds light on the microscopic mechanisms governing electron relaxation to steady state or equilibrium. The combination of accuracy and efficiency makes our DMD-based method a valuable tool for investigating ultrafast dynamics in a wide range of materials.
非平衡电子-声子动力学的动态模式分解:第一性原理实时玻尔兹曼方程的加速
由电子-声子(e-ph)相互作用控制的非平衡动力学在电子器件和光谱中起着关键作用,是理解材料中电子激发的核心。基于第一性原理计算的具有碰撞过程的实时玻尔兹曼输运方程(rt-BTE)可以描述电子和原子振动(声子)的耦合动力学。然而,这些模拟的瓶颈是在每个时间步长上计算密集动量网格上的e-ph散射积分。在这里,我们展示了一种基于动态模态分解(DMD)的数据驱动方法,该方法可以加速rt-BTE的时间传播并识别主导电子过程。我们将此方法应用于两个案例研究,高场电荷输运和超快激发电子弛豫。在这两种情况下,仅模拟~10%的动力学短时间窗口就足以使用DMD外推法预测从初始激励到稳态的动力学。从DMD中提取的动量空间模式的分析揭示了控制电子弛豫到稳态或平衡态的微观机制。准确性和效率的结合使我们基于dmd的方法成为研究各种材料超快动力学的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信