{"title":"Disturbance observer–based fixed-time sliding mode trajectory tracking control for marine surface vehicles with uncertain dynamics","authors":"Taiqi Wang, Chang Wang, Shengyu Yan, Yongtao Liu","doi":"10.1177/01423312231193188","DOIUrl":null,"url":null,"abstract":"In this paper, a fixed-time sliding mode control scheme is developed to fulfill the trajectory tracking task of a marine surface vehicle with unknown dynamics. To restrain the adverse effects of the unknown dynamics including the parameter inaccuracy and exogenous disturbances, a fixed-time disturbance observer is designed to estimate the lumped uncertainties using the bi-limit homogeneous theory without requiring any knowledge of the model uncertainties. Then, a nominal tracking controller is proposed to stabilize the error dynamic model in the sense of fixed-time Lyapunov stability, based on which a novel integral-type sliding mode manifold with bi-limit homogeneity is constructed to drive tracking error convergence in fixed time. To enhance the robustness of the vessel control system, a disturbance observer–based fixed-time integral sliding mode tracking controller is finally proposed, and the chattering phenomenon is effectively alleviated by direct estimation compensations. The analysis of Lyapunov stability indicates that the closed-loop system is fixed-time stable. Numerical simulations on a model vessel are carried out to validate theoretical results of the proposed control scheme.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"70 6 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231193188","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a fixed-time sliding mode control scheme is developed to fulfill the trajectory tracking task of a marine surface vehicle with unknown dynamics. To restrain the adverse effects of the unknown dynamics including the parameter inaccuracy and exogenous disturbances, a fixed-time disturbance observer is designed to estimate the lumped uncertainties using the bi-limit homogeneous theory without requiring any knowledge of the model uncertainties. Then, a nominal tracking controller is proposed to stabilize the error dynamic model in the sense of fixed-time Lyapunov stability, based on which a novel integral-type sliding mode manifold with bi-limit homogeneity is constructed to drive tracking error convergence in fixed time. To enhance the robustness of the vessel control system, a disturbance observer–based fixed-time integral sliding mode tracking controller is finally proposed, and the chattering phenomenon is effectively alleviated by direct estimation compensations. The analysis of Lyapunov stability indicates that the closed-loop system is fixed-time stable. Numerical simulations on a model vessel are carried out to validate theoretical results of the proposed control scheme.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.