Gen-Z: Generative Zero-Shot Text Classification with Contextualized Label Descriptions

Kumar, Sachin, Park, Chan Young, Tsvetkov, Yulia
{"title":"Gen-Z: Generative Zero-Shot Text Classification with Contextualized\n Label Descriptions","authors":"Kumar, Sachin, Park, Chan Young, Tsvetkov, Yulia","doi":"10.48550/arxiv.2311.07115","DOIUrl":null,"url":null,"abstract":"Language model (LM) prompting--a popular paradigm for solving NLP tasks--has been shown to be susceptible to miscalibration and brittleness to slight prompt variations, caused by its discriminative prompting approach, i.e., predicting the label given the input. To address these issues, we propose Gen-Z--a generative prompting framework for zero-shot text classification. GEN-Z is generative, as it measures the LM likelihood of input text, conditioned on natural language descriptions of labels. The framework is multivariate, as label descriptions allow us to seamlessly integrate additional contextual information about the labels to improve task performance. On various standard classification benchmarks, with six open-source LM families, we show that zero-shot classification with simple contextualization of the data source of the evaluation set consistently outperforms both zero-shot and few-shot baselines while improving robustness to prompt variations. Further, our approach enables personalizing classification in a zero-shot manner by incorporating author, subject, or reader information in the label descriptions.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"119 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Language model (LM) prompting--a popular paradigm for solving NLP tasks--has been shown to be susceptible to miscalibration and brittleness to slight prompt variations, caused by its discriminative prompting approach, i.e., predicting the label given the input. To address these issues, we propose Gen-Z--a generative prompting framework for zero-shot text classification. GEN-Z is generative, as it measures the LM likelihood of input text, conditioned on natural language descriptions of labels. The framework is multivariate, as label descriptions allow us to seamlessly integrate additional contextual information about the labels to improve task performance. On various standard classification benchmarks, with six open-source LM families, we show that zero-shot classification with simple contextualization of the data source of the evaluation set consistently outperforms both zero-shot and few-shot baselines while improving robustness to prompt variations. Further, our approach enables personalizing classification in a zero-shot manner by incorporating author, subject, or reader information in the label descriptions.
Gen-Z:基于语境化标签描述的生成零射击文本分类
语言模型(LM)提示——解决NLP任务的一种流行范例——已被证明容易受到错误校准和轻微提示变化的脆弱性,这是由其判别提示方法引起的,即预测给定输入的标签。为了解决这些问题,我们提出了Gen-Z——一个用于零样本文本分类的生成提示框架。GEN-Z是生成的,因为它测量输入文本的LM可能性,以标签的自然语言描述为条件。这个框架是多元的,因为标签描述允许我们无缝地集成关于标签的其他上下文信息,以提高任务性能。在六个开源LM家族的各种标准分类基准测试中,我们表明,使用评估集数据源的简单上下文化的零射击分类始终优于零射击和少射击基线,同时提高鲁棒性以提示变化。此外,我们的方法通过在标签描述中合并作者、主题或读者信息,以零枪击的方式实现个性化分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信