Dynamic Optimization on Quantum Hardware: Feasibility for a Process Industry Use Case

Nenno, Dennis Michael, Caspari, Adrian
{"title":"Dynamic Optimization on Quantum Hardware: Feasibility for a Process\n Industry Use Case","authors":"Nenno, Dennis Michael, Caspari, Adrian","doi":"10.48550/arxiv.2311.07310","DOIUrl":null,"url":null,"abstract":"The quest for real-time dynamic optimization solutions in the process industry represents a formidable computational challenge, particularly within the realm of applications like model predictive control where rapid and reliable computations are critical. Conventional methods can struggle to surmount the complexities of such tasks. Quantum computing and quantum annealing emerge as avant-garde contenders to transcend conventional computational constraints. We convert a dynamic optimization problem, characterized by a system of differential equations, into a Quadratic Unconstrained Binary Optimization problem, enabling quantum computational approaches. The empirical findings synthesized from classical methods, simulated annealing, quantum annealing via D-Wave's quantum annealer, and hybrid solver methodologies, illuminate the intricate landscape of computational prowess essential for tackling complex and high-dimensional dynamic optimization problems. Our findings suggest that while quantum annealing is a maturing technology that currently does not outperform state-of-the-art classical solvers, continuous improvements could eventually aid in increasing efficiency within the chemical process industry.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quest for real-time dynamic optimization solutions in the process industry represents a formidable computational challenge, particularly within the realm of applications like model predictive control where rapid and reliable computations are critical. Conventional methods can struggle to surmount the complexities of such tasks. Quantum computing and quantum annealing emerge as avant-garde contenders to transcend conventional computational constraints. We convert a dynamic optimization problem, characterized by a system of differential equations, into a Quadratic Unconstrained Binary Optimization problem, enabling quantum computational approaches. The empirical findings synthesized from classical methods, simulated annealing, quantum annealing via D-Wave's quantum annealer, and hybrid solver methodologies, illuminate the intricate landscape of computational prowess essential for tackling complex and high-dimensional dynamic optimization problems. Our findings suggest that while quantum annealing is a maturing technology that currently does not outperform state-of-the-art classical solvers, continuous improvements could eventually aid in increasing efficiency within the chemical process industry.
量子硬件的动态优化:过程工业用例的可行性
在过程工业中,对实时动态优化解决方案的追求是一个巨大的计算挑战,特别是在模型预测控制等应用领域,快速可靠的计算至关重要。传统方法很难克服这类任务的复杂性。量子计算和量子退火成为超越传统计算约束的先锋竞争者。我们将一个以微分方程系统为特征的动态优化问题转换为二次无约束二进制优化问题,使量子计算方法成为可能。从经典方法、模拟退火、通过D-Wave的量子退火器进行的量子退火和混合求解器方法合成的经验发现,阐明了解决复杂和高维动态优化问题所必需的计算能力的复杂景观。我们的研究结果表明,虽然量子退火是一项成熟的技术,目前还没有超越最先进的经典求解器,但持续的改进最终可能有助于提高化学过程工业的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信