Imtithal Alzughaibi, Mourad Ben Slimane, Obaid Algahtani
{"title":"On Mixed Fractional Lifting Oscillation Spaces","authors":"Imtithal Alzughaibi, Mourad Ben Slimane, Obaid Algahtani","doi":"10.3390/fractalfract7110819","DOIUrl":null,"url":null,"abstract":"We introduce hyperbolic oscillation spaces and mixed fractional lifting oscillation spaces expressed in terms of hyperbolic wavelet leaders of multivariate signals on Rd, with d≥2. Contrary to Besov spaces and fractional Sobolev spaces with dominating mixed smoothness, the new spaces take into account the geometric disposition of the hyperbolic wavelet coefficients at each scale (j1,⋯,jd), and are therefore suitable for a multifractal analysis of rectangular regularity. We prove that hyperbolic oscillation spaces are closely related to hyperbolic variation spaces, and consequently do not almost depend on the chosen hyperbolic wavelet basis. Therefore, the so-called rectangular multifractal analysis, related to hyperbolic oscillation spaces, is somehow ‘robust’, i.e., does not change if the analyzing wavelets were changed. We also study optimal relationships between hyperbolic and mixed fractional lifting oscillation spaces and Besov spaces with dominating mixed smoothness. In particular, we show that, for some indices, hyperbolic and mixed fractional lifting oscillation spaces are not always sharply imbedded between Besov spaces or fractional Sobolev spaces with dominating mixed smoothness, and thus are new spaces of a really different nature.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"140 41","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110819","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce hyperbolic oscillation spaces and mixed fractional lifting oscillation spaces expressed in terms of hyperbolic wavelet leaders of multivariate signals on Rd, with d≥2. Contrary to Besov spaces and fractional Sobolev spaces with dominating mixed smoothness, the new spaces take into account the geometric disposition of the hyperbolic wavelet coefficients at each scale (j1,⋯,jd), and are therefore suitable for a multifractal analysis of rectangular regularity. We prove that hyperbolic oscillation spaces are closely related to hyperbolic variation spaces, and consequently do not almost depend on the chosen hyperbolic wavelet basis. Therefore, the so-called rectangular multifractal analysis, related to hyperbolic oscillation spaces, is somehow ‘robust’, i.e., does not change if the analyzing wavelets were changed. We also study optimal relationships between hyperbolic and mixed fractional lifting oscillation spaces and Besov spaces with dominating mixed smoothness. In particular, we show that, for some indices, hyperbolic and mixed fractional lifting oscillation spaces are not always sharply imbedded between Besov spaces or fractional Sobolev spaces with dominating mixed smoothness, and thus are new spaces of a really different nature.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.