Long-time solvability for the 2D inviscid Boussinesq equations with borderline regularity and dispersive effects

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
V. Angulo-Castillo, L.C.F. Ferreira, L. Kosloff
{"title":"Long-time solvability for the 2D inviscid Boussinesq equations with borderline regularity and dispersive effects","authors":"V. Angulo-Castillo, L.C.F. Ferreira, L. Kosloff","doi":"10.3233/asy-231879","DOIUrl":null,"url":null,"abstract":"We are concerned with the long-time solvability for 2D inviscid Boussinesq equations for a larger class of initial data which covers the case of borderline regularity. First we show the local solvability in Besov spaces uniformly with respect to a parameter κ associated with the stratification of the fluid. Afterwards, employing a blow-up criterion and Strichartz-type estimates, the long-time solvability is obtained for large κ regardless of the size of initial data.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"142 4","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231879","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the long-time solvability for 2D inviscid Boussinesq equations for a larger class of initial data which covers the case of borderline regularity. First we show the local solvability in Besov spaces uniformly with respect to a parameter κ associated with the stratification of the fluid. Afterwards, employing a blow-up criterion and Strichartz-type estimates, the long-time solvability is obtained for large κ regardless of the size of initial data.
具有边界正则性和色散效应的二维无粘Boussinesq方程的长时间可解性
我们关注的是二维无粘Boussinesq方程的长时间可解性,对于一类更大的初始数据,它涵盖了边界正则性的情况。首先,我们均匀地展示了Besov空间中关于与流体分层相关的参数κ的局部可解性。然后,采用爆破准则和Strichartz-type估计,无论初始数据大小如何,对于较大的κ,都获得了长时间可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信