An arbitrary-order discrete rot-rot complex on polygonal meshes with application to a quad-rot problem

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Daniele Antonio Di Pietro
{"title":"An arbitrary-order discrete rot-rot complex on polygonal meshes with application to a quad-rot problem","authors":"Daniele Antonio Di Pietro","doi":"10.1093/imanum/drad045","DOIUrl":null,"url":null,"abstract":"Abstract In this work, following the discrete de Rham approach, we develop a discrete counterpart of a two-dimensional de Rham complex with enhanced regularity. The proposed construction supports general polygonal meshes and arbitrary approximation orders. We establish exactness on a contractible domain for both the versions of the complex with and without boundary conditions and, for the former, prove a complete set of Poincaré-type inequalities. The discrete complex is then used to derive a novel discretization method for a quad-rot problem, which, unlike other schemes in the literature, does not require the forcing term to be prepared. We carry out complete stability and convergence analyses for the proposed scheme and provide numerical validation of the results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, following the discrete de Rham approach, we develop a discrete counterpart of a two-dimensional de Rham complex with enhanced regularity. The proposed construction supports general polygonal meshes and arbitrary approximation orders. We establish exactness on a contractible domain for both the versions of the complex with and without boundary conditions and, for the former, prove a complete set of Poincaré-type inequalities. The discrete complex is then used to derive a novel discretization method for a quad-rot problem, which, unlike other schemes in the literature, does not require the forcing term to be prepared. We carry out complete stability and convergence analyses for the proposed scheme and provide numerical validation of the results.
多边形网格上任意阶离散rot-rot复形及其在四次rot问题中的应用
在这项工作中,遵循离散de Rham方法,我们开发了具有增强规律性的二维de Rham复合体的离散对应物。该结构支持一般多边形网格和任意近似顺序。对于有边界条件和无边界条件的复合体,我们在可缩域上建立了精确性,对于有边界条件的复合体,我们证明了一组完备的poincar型不等式。然后利用离散复形导出了一种新的四次问题的离散化方法,与文献中的其他方案不同,该方法不需要准备强迫项。我们对所提出的方案进行了完整的稳定性和收敛性分析,并对结果进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信