Equivalent transmission line characterization and multi-layer material measurement analysis of the signal conversion process in the pulsed electro-acoustic method
IF 1.4 4区 工程技术Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanwen Ren, Siyang Zhao, Jian Mu, Haoyu Gao, Tianrun Qi, Zhiyun Han, Zhihui Li, Qingmin Li
{"title":"Equivalent transmission line characterization and multi-layer material measurement analysis of the signal conversion process in the pulsed electro-acoustic method","authors":"Hanwen Ren, Siyang Zhao, Jian Mu, Haoyu Gao, Tianrun Qi, Zhiyun Han, Zhihui Li, Qingmin Li","doi":"10.1049/smt2.12168","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the equivalent transmission line model of the pulsed electro-acoustic (PEA) method with its applications. Based on the consistency of acoustic wave behaviour inside lossy acoustic materials and voltage wave propagation in transmission line, an equivalent simulation model of the PEA system is developed, whose reliability is verified by the output from the transducer and amplifier models and the comparison with measured waveforms. For the problem of acoustic impedance mismatch between different modules, simulation indicates that the unequal impedances of semiconducting electrode and sample can affect the amplitude of the measured signal at the upper electrode side, and the reflected acoustic waves caused by the transducer can affect the charge waveform. Further simulation for multi-layer materials finds that the reflected acoustic waves of different samples and sound absorbing module can superimpose on the charge signal. Accordingly, a selection criterion is proposed to avoid the effect of the reflected waves at the interface. As for the acoustic reflection caused by internal charge, it needs to be dealt with sequentially in calibration process, starting from the result inside the sample near ground electrode. The research can provide a foundation for analyzing the acoustic properties of the PEA method.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the equivalent transmission line model of the pulsed electro-acoustic (PEA) method with its applications. Based on the consistency of acoustic wave behaviour inside lossy acoustic materials and voltage wave propagation in transmission line, an equivalent simulation model of the PEA system is developed, whose reliability is verified by the output from the transducer and amplifier models and the comparison with measured waveforms. For the problem of acoustic impedance mismatch between different modules, simulation indicates that the unequal impedances of semiconducting electrode and sample can affect the amplitude of the measured signal at the upper electrode side, and the reflected acoustic waves caused by the transducer can affect the charge waveform. Further simulation for multi-layer materials finds that the reflected acoustic waves of different samples and sound absorbing module can superimpose on the charge signal. Accordingly, a selection criterion is proposed to avoid the effect of the reflected waves at the interface. As for the acoustic reflection caused by internal charge, it needs to be dealt with sequentially in calibration process, starting from the result inside the sample near ground electrode. The research can provide a foundation for analyzing the acoustic properties of the PEA method.
本文研究了脉冲电声(PEA)方法的等效传输线模型及其应用。根据有损声学材料内部声波行为与电压波在传输线中传播的一致性,建立了 PEA 系统的等效仿真模型,并通过换能器和放大器模型的输出以及与测量波形的比较验证了该模型的可靠性。针对不同模块之间声阻抗不匹配的问题,仿真表明,半导体电极和样品的不等阻抗会影响上电极侧测量信号的振幅,换能器产生的反射声波会影响电荷波形。对多层材料的进一步模拟发现,不同样品和吸声模块的反射声波会叠加到电荷信号上。因此,提出了一种选择标准,以避免界面反射波的影响。至于内部电荷引起的声波反射,需要在校准过程中从样品内部靠近接地电极的结果开始依次处理。这项研究可为分析 PEA 方法的声学特性奠定基础。
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.