{"title":"Zero to k Inflated Poisson Regression Models with Applications","authors":"Hadi Saboori, Mahdi Doostparast","doi":"10.1007/s44199-023-00067-3","DOIUrl":null,"url":null,"abstract":"Abstract In the count data set, the frequency of some points may occur more than expected under the standard data analysis models. Indeed, in many situations, the frequencies of zero and of some other points tend to be higher than those of the Poisson. Adapting existing models for analyzing inflated observations has been studied in the literature. A method for modeling the inflated data is the inflated distribution. In this paper, we extend this inflated distribution. Indeed, if inflations occur in three or more of the support point, then the previous models are not suitable. We propose a model based on zero, one, $$\\ldots ,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and k inflated points with probabilities $$w_{0},w_1,\\ldots ,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and $$w_{k},$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> respectively. By choosing the appropriate values for the weights $$w_{0},\\ldots ,w_{k},$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> various inflated distributions, such as the zero-inflated, zero–one-inflated, and zero– k -inflated distributions, are derived as special cases of the proposed model in this paper. Various illustrative examples and real data sets are analyzed using the obtained results.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44199-023-00067-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the count data set, the frequency of some points may occur more than expected under the standard data analysis models. Indeed, in many situations, the frequencies of zero and of some other points tend to be higher than those of the Poisson. Adapting existing models for analyzing inflated observations has been studied in the literature. A method for modeling the inflated data is the inflated distribution. In this paper, we extend this inflated distribution. Indeed, if inflations occur in three or more of the support point, then the previous models are not suitable. We propose a model based on zero, one, $$\ldots ,$$ …, and k inflated points with probabilities $$w_{0},w_1,\ldots ,$$ w0,w1,…, and $$w_{k},$$ wk, respectively. By choosing the appropriate values for the weights $$w_{0},\ldots ,w_{k},$$ w0,…,wk, various inflated distributions, such as the zero-inflated, zero–one-inflated, and zero– k -inflated distributions, are derived as special cases of the proposed model in this paper. Various illustrative examples and real data sets are analyzed using the obtained results.
摘要在计数数据集中,在标准数据分析模型下,某些点的出现频率可能会超出预期。的确,在许多情况下,零点和其他点的频率往往比泊松的频率高。已在文献中研究了适应现有模型来分析膨胀观测。对膨胀数据建模的一种方法是膨胀分布。在本文中,我们扩展了这个膨胀分布。事实上,如果通货膨胀出现在三个或更多的支撑点,那么以前的模型就不合适了。我们提出了一个基于0、1、$$\ldots ,$$…和k个膨胀点的模型,分别具有$$w_{0},w_1,\ldots ,$$ w 0、w 1、…和$$w_{k},$$ w k的概率。通过为权重$$w_{0},\ldots ,w_{k},$$ w 0,…,w k选择合适的值,可以推导出各种膨胀分布,如0 -膨胀分布,0 - 1 -膨胀分布和0 - k -膨胀分布,作为本文提出的模型的特殊情况。利用所得结果对各种实例和实际数据集进行了分析。