{"title":"Prismatic cohomology and p-adic homotopy theory","authors":"Tobias Shin","doi":"10.1007/s40062-023-00335-0","DOIUrl":null,"url":null,"abstract":"<div><p>Historically, it was known by the work of Artin and Mazur that the <span>\\(\\ell \\)</span>-adic homotopy type of a smooth complex variety with good reduction mod <i>p</i> can be recovered from the reduction mod <i>p</i>, where <span>\\(\\ell \\)</span> is not <i>p</i>. This short note removes this last constraint, with an observation about the recent theory of prismatic cohomology developed by Bhatt and Scholze. In particular, by applying a functor of Mandell, we see that the étale comparison theorem in the prismatic theory reproduces the <i>p</i>-adic homotopy type for a smooth complex variety with good reduction mod <i>p</i>.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"18 4","pages":"521 - 541"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-023-00335-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Historically, it was known by the work of Artin and Mazur that the \(\ell \)-adic homotopy type of a smooth complex variety with good reduction mod p can be recovered from the reduction mod p, where \(\ell \) is not p. This short note removes this last constraint, with an observation about the recent theory of prismatic cohomology developed by Bhatt and Scholze. In particular, by applying a functor of Mandell, we see that the étale comparison theorem in the prismatic theory reproduces the p-adic homotopy type for a smooth complex variety with good reduction mod p.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.