More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space

IF 0.2 Q4 MATHEMATICS
Stoyu T.  Barov
{"title":"More on exposed points and extremal points of convex sets in $\\mathbb{R}^n$ and Hilbert space","authors":"Stoyu T.  Barov","doi":"10.14712/1213-7243.2023.018","DOIUrl":null,"url":null,"abstract":"Let ${\\mathbb{V}}$ be a separable real Hilbert space, $k \\in {\\mathbb{N}}$ with $k < \\dim {\\mathbb{V}}$, and let $B$ be convex and closed in ${\\mathbb{V}}$. Let ${\\mathcal{P}}$ be a collection of linear $k$-subspaces of ${\\mathbb{V}}$. A point $w \\in B$ is called exposed by ${\\mathcal{P}}$ if there is a $P \\in {\\mathcal{P}}$ so that $(w + P) \\cap B =\\{w\\}$. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\\mathcal{P}}$ points whenever ${\\mathcal{P}}$ is dense and $G_{\\delta}$. In addition, we discuss the question when the set of exposed by some ${\\mathcal{P}}$ points forms a $G_{\\delta}$-set.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":"84 12","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2023.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ${\mathbb{V}}$ be a separable real Hilbert space, $k \in {\mathbb{N}}$ with $k < \dim {\mathbb{V}}$, and let $B$ be convex and closed in ${\mathbb{V}}$. Let ${\mathcal{P}}$ be a collection of linear $k$-subspaces of ${\mathbb{V}}$. A point $w \in B$ is called exposed by ${\mathcal{P}}$ if there is a $P \in {\mathcal{P}}$ so that $(w + P) \cap B =\{w\}$. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\mathcal{P}}$ points whenever ${\mathcal{P}}$ is dense and $G_{\delta}$. In addition, we discuss the question when the set of exposed by some ${\mathcal{P}}$ points forms a $G_{\delta}$-set.
更多关于$\mathbb{R}^n$和Hilbert空间中凸集的露点和极值点
设${\mathbb{V}}$为可分离实数希尔伯特空间,$k \in {\mathbb{N}}$与$k < \dim {\mathbb{V}}$,并设$B$为${\mathbb{V}}$中的凸闭空间。设${\mathcal{P}}$是${\mathbb{V}}$的线性$k$ -子空间的集合。如果有$P \in {\mathcal{P}}$点,则称为${\mathcal{P}}$暴露点$w \in B$,以便$(w + P) \cap B =\{w\}$。我们证明,在某些自然条件下,当${\mathcal{P}}$是致密的和$G_{\delta}$时,$B$可以被重构为其所有暴露于${\mathcal{P}}$点的闭合的凸包。此外,我们还讨论了一些${\mathcal{P}}$点暴露的集合何时构成$G_{\delta}$ -集合的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信