Utilizing Machine Learning For Identifying Potential Beneficiaries of Family Hope Program

Muhammad Abdurrohim, Lena Magdalena, Muhammad Hatta
{"title":"Utilizing Machine Learning For Identifying Potential Beneficiaries of Family Hope Program","authors":"Muhammad Abdurrohim, Lena Magdalena, Muhammad Hatta","doi":"10.38101/sisfotek.v13i2.9718","DOIUrl":null,"url":null,"abstract":"In identifying families who are entitled to PKH assistance there are often obstacles such as RTSM identification errors, this is caused by the negligence of officials so that they are not accurate in making confirmations in large numbers. An automated system that can predict RTSM can be a solution to this problem, a system based on a machine learning model. This study aims to analyze the machine learning model Decision Tree C45 (DT C45), K-Nearest Neighbor (KNN), and Naive Bayes (NB). The results showed that Decision Tree C45 was the optimal model to implement with an accuracy value of 70%.","PeriodicalId":378682,"journal":{"name":"JURNAL SISFOTEK GLOBAL","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL SISFOTEK GLOBAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38101/sisfotek.v13i2.9718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In identifying families who are entitled to PKH assistance there are often obstacles such as RTSM identification errors, this is caused by the negligence of officials so that they are not accurate in making confirmations in large numbers. An automated system that can predict RTSM can be a solution to this problem, a system based on a machine learning model. This study aims to analyze the machine learning model Decision Tree C45 (DT C45), K-Nearest Neighbor (KNN), and Naive Bayes (NB). The results showed that Decision Tree C45 was the optimal model to implement with an accuracy value of 70%.
利用机器学习识别家庭希望计划的潜在受益者
在确定有资格获得PKH援助的家庭时,往往存在诸如RTSM识别错误等障碍,这是由于官员的疏忽造成的,因此他们在进行大量确认时不准确。一个可以预测RTSM的自动化系统可以解决这个问题,一个基于机器学习模型的系统。本研究旨在分析机器学习模型决策树C45 (DT C45)、k近邻(KNN)和朴素贝叶斯(NB)。结果表明,决策树C45是最优模型,准确率为70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信