Sérgio Luiz Rodrigues Donato, Alessandro de Magalhães Arantes, Beatriz Lima Barros, Joel da Silva de Deus, Ednei de Souza Pires
{"title":"Gas exchange in umbu tree accessions","authors":"Sérgio Luiz Rodrigues Donato, Alessandro de Magalhães Arantes, Beatriz Lima Barros, Joel da Silva de Deus, Ednei de Souza Pires","doi":"10.14295/cs.v14.4154","DOIUrl":null,"url":null,"abstract":"The objective of this work was to evaluate gas exchanges in umbu tree accessions. A 5 × 7 × 2 split-split plot experiment was carried out in a completely randomized design (five accessions – BRS-68, EPAMIG-05, BGU-61, BGU-75, and BGU-50 × seven evaluation dates × two reading times – 8 a.m. and 2 p.m.) with three repetitions. The lower leaf temperatures recorded in BRS-68 and EPAMIG 05 accessions favor higher net photosynthetic rates, water use efficiency and instantaneous carboxylation efficiency compared to BGU 61 accession. Umbu tree regulates transpiration by reducing stomatal conductance under high vapor pressure deficit, although the tree increases transpiration as a defense strategy against heat stress, even with a reduction in stomatal conductance. High temperatures limit instantaneous carboxylation efficiency, photosynthetic rate, and the ratio of photosynthesis to radiation incident on the leaf. Transpiration varies directly with stomatal conductance, while intrinsic water use efficiency varies inversely with internal CO2 concentration.","PeriodicalId":38570,"journal":{"name":"Comunicata Scientiae","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comunicata Scientiae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/cs.v14.4154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work was to evaluate gas exchanges in umbu tree accessions. A 5 × 7 × 2 split-split plot experiment was carried out in a completely randomized design (five accessions – BRS-68, EPAMIG-05, BGU-61, BGU-75, and BGU-50 × seven evaluation dates × two reading times – 8 a.m. and 2 p.m.) with three repetitions. The lower leaf temperatures recorded in BRS-68 and EPAMIG 05 accessions favor higher net photosynthetic rates, water use efficiency and instantaneous carboxylation efficiency compared to BGU 61 accession. Umbu tree regulates transpiration by reducing stomatal conductance under high vapor pressure deficit, although the tree increases transpiration as a defense strategy against heat stress, even with a reduction in stomatal conductance. High temperatures limit instantaneous carboxylation efficiency, photosynthetic rate, and the ratio of photosynthesis to radiation incident on the leaf. Transpiration varies directly with stomatal conductance, while intrinsic water use efficiency varies inversely with internal CO2 concentration.
Comunicata ScientiaeAgricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
0.90
自引率
0.00%
发文量
78
期刊介绍:
The Comunicata Scientiae journal edited by Campus “Profa Cinobelina Elvas” of Federal University of Piauí (Brazil) publishes original articles, scientific notes and review articles (when invited by the editorial board), which present significant importance for Agrarian and Environmental Sciences in Portuguese, Spanish and preferentially, in English.