Modeling Metadata and Data from Censuses and Surveys with Graph Databases

Alya Faradila, None Lutfi Rahmatuti Maghfiroh
{"title":"Modeling Metadata and Data from Censuses and Surveys with Graph Databases","authors":"Alya Faradila, None Lutfi Rahmatuti Maghfiroh","doi":"10.29207/resti.v7i5.5273","DOIUrl":null,"url":null,"abstract":"Relational database users are switching to non-relational databases because non-relational databases are better able to handle dynamic data storage. One of the institutions that require dynamic data storage is Statistics Indonesia (BPS). Currently, data storage for census and survey activities at BPS is done using a relational database, although there are metadata changes in each activity. Accommodating metadata changes in each activity requires one database, which creates problems when retrieving some raw data. There is an opportunity for convenience if the data collected is stored in a non-relational database, one of which is a graph database. This research discusses the modeling of metadata and data from censuses and surveys at BPS using a graph database. Then we implement the Neo4j DBMS and compare the proposed model with the relational model in the Microsoft SQL Server DBMS. Then, a comparison of the features and characteristics of each DBMS is done, and finally, performance testing is done with Apache JMeter. Modeling has been able to handle dynamic data structure changes, but Neo4j's performance is still lagging behind Microsoft SQL Server.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i5.5273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relational database users are switching to non-relational databases because non-relational databases are better able to handle dynamic data storage. One of the institutions that require dynamic data storage is Statistics Indonesia (BPS). Currently, data storage for census and survey activities at BPS is done using a relational database, although there are metadata changes in each activity. Accommodating metadata changes in each activity requires one database, which creates problems when retrieving some raw data. There is an opportunity for convenience if the data collected is stored in a non-relational database, one of which is a graph database. This research discusses the modeling of metadata and data from censuses and surveys at BPS using a graph database. Then we implement the Neo4j DBMS and compare the proposed model with the relational model in the Microsoft SQL Server DBMS. Then, a comparison of the features and characteristics of each DBMS is done, and finally, performance testing is done with Apache JMeter. Modeling has been able to handle dynamic data structure changes, but Neo4j's performance is still lagging behind Microsoft SQL Server.
用图形数据库对人口普查和调查的元数据和数据建模
关系数据库用户正在转向非关系数据库,因为非关系数据库能够更好地处理动态数据存储。需要动态数据存储的机构之一是印度尼西亚统计局(BPS)。目前,BPS的人口普查和调查活动的数据存储是使用关系数据库完成的,尽管每个活动中的元数据都会发生变化。在每个活动中容纳元数据更改需要一个数据库,这在检索一些原始数据时产生了问题。如果收集的数据存储在非关系数据库(其中之一是图数据库)中,则有可能提供便利。本研究讨论了使用图形数据库对BPS人口普查和调查的元数据和数据进行建模。然后我们实现了Neo4j数据库管理系统,并与Microsoft SQL Server数据库管理系统中的关系模型进行了比较。然后,对每个DBMS的特性和特点进行比较,最后,使用Apache JMeter进行性能测试。建模已经能够处理动态数据结构的变化,但是Neo4j的性能仍然落后于Microsoft SQL Server。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信